Research advance of lithium-rich cathode materials in all-solid-state lithium batteries

Author:

Yang Yuan,Hu Nai-Fang,Jin Yong-Cheng,Ma Jun,Cui Guang-Lei, ,

Abstract

The development of all-solid-state lithium batteries with high energy density, long cycle life, low cost and high safety is one of the important directions for the developing next-generation lithium-ion batteries. Lithium-rich cathode materials have been widely used in liquid lithium batteries for their higher discharge specific capacity (> 250 mAh/g) and energy density (> 900 Wh/kg), high thermal stability and low raw material cost. With the rapid development of high-performance lithium-rich cathode materials and solid-state electrolytes in all-solid-state lithium batteries, the application of lithium-rich cathode materials in all-solid-state lithium batteries is expected to make a breakthrough toward the target of 500 Wh/kg energy density of lithium-ion batteries. In this review, first, we elaborate the failure mechanism of lithium-rich cathode materials in all-solid-state lithium batteries. The poor electronic conductivity, irreversible redox reaction of anionic oxygen and structute transformation during the electrochemical cycling of lithium-rich cathode materials result in the low initial coulomb efficiency, poor cycling stability and voltage decay. In addition, the high operating voltage of lithium-rich cathode materials (> 4.5 V <i>vs</i>. Li/Li<sup>+</sup>) triggers off not only the conventional interfacial chemical reactions between anode and electrolyte, but also the release of oxygen, aggravating the interfacial electrochemical reactions, which reduces the stability of the cathode/electrolyte interface. Therefore, the intrinsic characteristics of lithium-rich cathode materials and the severe interfacial reaction of lithium-rich cathode/electrolyte greatly limit the application of lithium-rich cathode materials in all-solid-state lithium batteries. Then, we review the research progress of lithium-rich cathode materials in various solid-state electrolyte systems in recent years. The higher room temperature ionic conductivity and wider voltage window of inorganic solid-state electrolytes provide opportunities for the application of lithium-rich cathode materials in all-solid-state lithium batteries. At present, the application of lithium-rich cathode materials in all-solid-state lithium batteries is explored on the basis of sulfide, halide and oxide solid-state electrolyte systems, and important progress has been made in the studies of composite cathode preparation methods, interfacial reaction mechanisms and activation mechanisms. Finally, we summarize the current research hotspot of lithium-rich cathode all-solid-state lithium batteries and propose several strategies for their future studies, such as the regulation of cathode material components, the construction of lithium ion and electron transport pathways within the composite cathode, and the interfacial modification of cathode materials that have been shown to have significant effects in solving the failure problem.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3