Quantum microwave electric field measurement technology based on enhancement electric filed resonator

Author:

Wu Bo,Lin Yi,Wu Feng-Chuan,Chen Xiao-Zhang,An Qiang,Liu Yi,Fu Yun-Qi,

Abstract

Rydberg atoms based quantum microwave measurement technology has significant advantages such as self-calibration, traceability, high sensitivity and stable uniformity of measurement. In this work, from the dimension of traditional electromagnetic theory, an electric field local enhancement technique for quantum microwave measurements is developed to improve the sensitivity of quantum microwave receiver. The theoretical basis of this method comes from the different mechanisms of realization of microwave reception in quantum microwave receivers and classical receiver. Classic receivers use antennas to collect microwave energy in space to signal reception; quantum microwave receivers measure the strength of the electric field in the path of a laser beam in an atomic gas chamber (the beam is about 100 µm in diameter) to realize the signal reception. Therefore, the sensitivity of quantum microwave receiver can be improved by increasing the electric field strength in the path of laser beam. The critical physical mechanism is the multi-beam interference at the open end and the short-circuited end of the structure. The results show that with the decrease of gap height of parallel plates, the enhancement factor of electric field strength increases rapidly and the power density compression capability is greatly improved. The |69D<sub>5/2</sub><inline-formula><tex-math id="Z-20230113213135">\begin{document}$\rangle $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20221582_Z-20230113213135.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="3-20221582_Z-20230113213135.png"/></alternatives></inline-formula> experiments verify that the structure can achieve a 25 dB electric field enhancement at 2.1 GHz. This research is expected to be helpful in improving the sensitivity of measurement based on atomic measurement capabilities and in promoting the practical development of quantum microwave measurement technology.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference26 articles.

1. Joshua A G, Christopher L H, Andrew S, Dave A A, Stephanie M, Nithiwadee T, Georg R 2014 Appl. Phys. Lett. 105 1683

2. Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Journal of Radio Wave Science 37 279
付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279

3. Zhou Y L, Yan D, Li W 2022 Phys. Rev. A 105 053714

4. Christopher L H, Matt T S, Joshua A G, Andrew D, David A A, Georg R 2017 J. Appl. Phys. 121 717

5. Ansari R, Giraud-Héraud Y, Tran Thanh Van J 1996 Dark Matter in Cosmology Quantum Measurements Experimental Gravitation (Vol. 91) (Atlantica Séguier Frontières) p341

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3