Transient characteristics simulation of total ionizing dose effect on Si n-metal-oxide-semiconductor field effect transistor under different gate voltage

Author:

Zhang Lin,Ma Lin-Dong,Du Lin,Li Yan-Bo,Xu Xian-Feng,Huang Xin-Rong, ,

Abstract

In this work, we establish a novel numerical model of total ionizing dose effect and use it to simulate the radiation degradation of Si n-metal-oxide-semiconductor field effect transistor (NMOSFET) under different bias voltages. The model is based on the capture/emission process of traps, and is used to simulate the transient characteristics of semiconductor devices under total ionizing dose effect. In the simulation, the changes of trapped holes in Si/SiO<sub>2</sub> interface and gate oxide layer are extracted, and it is found that the number of trapped holes at different positions tends to be saturated with the increase of the total dose. When the radiation bias voltage is positive, the degradation amplitude of the threshold voltage is significantly higher than that when the radiation bias voltage is negative. Whether the gate is applied with positive bias or negative bias during the radiation, the degradation amplitude of the threshold voltage shows a trend of first increasing and then decreasing with the increase of the absolute value of radiation bias voltage. Radiation bias voltage also has a certain effect on the annealing effect after radiation. If a gate bias voltage is applied to the device during the annealing, the electrical characteristics recovery amplitude of the device is lower than that under zero bias voltage.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3