Coherent excitation energy transfer processes in two-dimensional para-sexiphenyl molecular clusters

Author:

Fang De-Yin,Fan Xu-Yang,Wei An,Wang Lu-Xia,

Abstract

Excitation energy transfer is one of the most important factors affecting the applications of para-sexiphenyl devices. The study of exciton dynamics and exciton coherence effect of para-sexiphenyl clusters under external field excitation is important in order to improve the performance of molecular devices composed of para-sexiphenyl and its related derivatives. In this work, the two-dimensional disc-like para-sexiphenyl molecular cluster is used as the object of study. The molecular system is simplified into a two-level model based on its structural features and energy level distribution. Within the framework of density matrix theory, the exciton dynamics and exciton coherence behavior of disk-like para-hexaphene molecular clusters excited by different pulse fields are analyzed through using the mathematical mean value approximation of the operator. The results show that when long pulses are used to excite para-sexiphenyl clusters, the single exciton state characteristic appears and is insensitive to the change of excited external field strength. When the clusters are subjected to strong pulsed fields with short pulse widths, multiple excitons are excited simultaneously in the cluster, forming multiple exciton states, with the exciton energy levels shifting toward lower energy and new hybrid states appearing. In the optical response spectrum, there appear multiple resonance peaks. And as the pulse field is enhanced, the multi-exciton effect becomes apparent and the hybridization energy level increases. Under short pulse excitation, the excited states are distributed differently in different energy regions, but all of them show obvious symmetry. As the highest-energy exciton states of H-type clusters are preferentially excited, we analyze the exciton state population and the exciton coherence evolution with time in the high-energy exciton state. With the pulse field increases, Rabi oscillations appear and the exciton coherence effect increases. When the pulsed field reaches a certain field strength, the exciton oscillation cooperativity disappears in the first 100 fs, showing the non-local characteristic. The position of the wave trough of the exciton state population corresponds to the peak in the exciton coherence size. It indicates that when the pulse field is intense enough, a large number of molecules are in the exciton coherent state during the pulsed excitation, and transient out-of-domain phenomena occur.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3