High-order harmonic platform extension and cluster expansion of H ion cluster

Author:

Zhang Chun-Yan, ,

Abstract

By solving the time-dependent Schrödinger equation for the interaction of the intense laser field with the two-dimensional model of H ion cluster, it is found that the high-order harmonic plateau produced by H ion cluster is wider than that generated by a single H atom. The interaction between intense laser field and cluster is decomposed into three processes: internal ionization, classical motion under the action of external field and Coulomb field of the cluster ions, and recombination. After internal ionization, the particle is deemed classical and its motion follows Newton’s equation of motion. By studying the classical trajectory of electron and the variation of kinetic and potential energy with time, it is observed that during the electron’s returning, the additional kinetic energy is required as a result of the reduction in potential energy. Furthermore, the correlation between return energy and return time obtained from the classical model is in good agreement with that obtained from time-dependent Schrödinger equation. In this study, the cutoff energy of high-order harmonic generated by clusters is compared with that of a single atom, indicating that the extension of the platform of high-order harmonic by clusters is primarily caused by the Coulomb effect of other ions surrounding the parent nucleus. Additionally, the influence of ion spacing on the cutoff energy of high-order harmonic is also investigated, and a possible relationship between the cut-off energy of high harmonic and the cluster expansion is established.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3