Author:
Pan Bin-Xiong,Gong Cheng,Zhang Peng,Liu Zi-Ye,Pi Peng-Jian,Chen Wang,Huang Wen-Qiang,Wang Bao-Ju,Zhan Qiu-Qiang, ,
Abstract
Laser point-scanning fluorescence microscopy serves as an indispensable tool in the life science research, owing to its merits of excellent resolution, high sensitivity, remarkable specificity, three-dimensional optical-sectioning capability, and dynamic imaging. However, conventional laser point-scanning fluorescence microscopy confronts a series of challenges in the rapidly evolving field of life sciences, because of the limitations imposed by optical diffraction and point scanning detection. Over the past two decades, substantial advancements have been made in super-resolution fluorescence microscopic imaging techniques. Researchers have developed various high spatial and temporal resolution point-scanning microtechniques, which hold great significance for biological optical imaging and other relevant applications. Regrettably, there are still few review articles covering the recent progress of this field. It is essential to provide a comprehensive review of laser point-scanning fluorescence microscopic techniques for their future developments and trends. In this article, the basic principles and recent advances in different point-scanning fluorescence microscopy imaging techniques are introduced from the perspectives of temporal resolution and spatial resolution, and the progress and applications of high spatio-temporal resolution microscopic imaging techniques based on point-scanning mode are summarized. Finally, the development trends and challenges of high spatio-temporal resolution point scanning fluorescence microscopic imaging technique are discussed.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy