Progress in protein p<i>K</i><sub>a</sub> prediction

Author:

Luo Fang-Fang,Cai Zhi-Tao,Huang Yan-Dong,

Abstract

The pH value represents the acidity of the solution and plays a key role in many life events linked to human diseases. For instance, the β-site amyloid precursor protein cleavage enzyme, BACE1, which is a major therapeutic target of treating Alzheimer’s disease, functions within a narrow pH region around 4.5. In addition, the sodium-proton antiporter NhaA from <i>Escherichia coli</i> is activated only when the cytoplasmic pH is higher than 6.5 and the activity reaches a maximum value around pH 8.8. To explore the molecular mechanism of a protein regulated by pH, it is important to measure, typically by nuclear magnetic resonance, the binding affinities of protons to ionizable key residues, namely <inline-formula><tex-math id="M8">\begin{document}$ {\mathrm{p}}{K}_{{\mathrm{a}}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M8.png"/></alternatives></inline-formula> values, which determine the deprotonation equilibria under a pH condition. However, wet-lab experiments are often expensive and time consuming. In some cases, owing to the structural complexity of a protein, <inline-formula><tex-math id="M9">\begin{document}$ {\mathrm{p}}{K}_{{\mathrm{a}}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M9.png"/></alternatives></inline-formula> measurements become difficult, making theoretical <inline-formula><tex-math id="M10">\begin{document}$ {\mathrm{p}}{K}_{{\mathrm{a}}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M10.png"/></alternatives></inline-formula> predictions in a dry laboratory more advantageous. In the past thirty years, many efforts have been made to accurately and fast predict protein <inline-formula><tex-math id="M11">\begin{document}$ {\mathrm{p}}{K}_{{\mathrm{a}}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M11.png"/></alternatives></inline-formula> with physics-based methods. Theoretically, constant pH molecular dynamics (CpHMD) method that takes conformational fluctuations into account gives the most accurate predictions, especially the explicit-solvent CpHMD model proposed by Huang and coworkers (<ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1021/acs.jctc.6b00552">2016 <i>J. Chem. Theory Comput.</i> <b>12</b> 5411</ext-link>) which in principle is applicable to any system that can be described by a force field. However, lengthy molecular simulations are usually necessary for the extensive sampling of conformation. In particular, the computational complexity increases significantly if water molecules are included explicitly in the simulation system. Thus, CpHMD is not suitable for high-throughout computing requested in industry circle. To accelerate <inline-formula><tex-math id="M12">\begin{document}$ {\mathrm{p}}{K}_{{\mathrm{a}}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M12.png"/></alternatives></inline-formula> prediction, Poisson-Boltzmann (PB) or empirical equation-based schemes, such as H++ and PropKa, have been developed and widely used where <inline-formula><tex-math id="M13">\begin{document}$ {\mathrm{p}}{K}_{{\mathrm{a}}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M13.png"/></alternatives></inline-formula> values are obtained via one-structure calculations. Recently, artificial intelligence (AI) is applied to the area of protein <inline-formula><tex-math id="M14">\begin{document}$ {\mathrm{p}}{K}_{{\mathrm{a}}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M14.png"/></alternatives></inline-formula> prediction, which leads to the development of DeepKa by Huang laboratory (<ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.doi.org/10.1021/acsomega.1c05440">2021 <i>ACS Omega</i> <b>6</b> 34823</ext-link>), the first AI-driven <inline-formula><tex-math id="M15">\begin{document}$ {\mathrm{p}}{K}_{{\mathrm{a}}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M15.png"/></alternatives></inline-formula> predictor. In this paper, we review the advances in protein <inline-formula><tex-math id="M16">\begin{document}$ {\mathrm{p}}{K}_{{\mathrm{a}}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M16.png"/></alternatives></inline-formula> prediction contributed mainly by CpHMD methods, PB or empirical equation-based schemes, and AI models. Notably, the modeling hypotheses explained in the review would shed light on future development of more powerful protein <inline-formula><tex-math id="M17">\begin{document}$ {\mathrm{p}}{K}_{{\mathrm{a}}} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="24-20231356_M17.png"/></alternatives></inline-formula> predictors.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3