Author:
Liu Xiang-Lian,Li Kai-Zhou,Li Xiao-Qiong,Zhang Qiang,
Abstract
The location and transmission of light is the core of modern photonic integrated device, and the proposal of topological photonics provides a new way of implementing optical manipulation. Topological photonic structures based on the quantum spin hall effect or quantum valley hall effect have the properties of immunity to defects and suppress backscattering, so they play a key role in designing novel low-loss photonic devices. In this work, we design a two-dimensional dielectric photonic crystal with time-reversal symmetry to achieve the coexistence of the quantum spin hall effect and the quantum valley hall effect in a photonic crystal. The design can be likened to an electronic system in which two pairs of Kramers simplex pairs are constructed to achieve a quadruple simplex pair in a photonic crystal. First, based on the method of shrinking and expanding the silicon pillars arranged in the honeycomb structure, the quadruple degeneracy point at the <i>Γ</i> point of the first Brillouin zone is opened, and the corresponding topologically trivial or non-trivial photonic band gap is formed,thereby realizing quantum spin hall effect. The expanded honeycomb lattice evolves into a Kagome structure, and then positive and negative perturbations are added to the Kagome lattice, breaking the spatial inversion symmetry of the Photonic crystal. When mirror symmetry is broken, different chiral photonic crystals can be created,leading the degeneracy point of the non-equivalent valleys <i>K</i> and <i>K'</i> in the Brillouin zone to be opened and a complete band gap to appear, thus realizing the Quantum valley hall effect. In the common band gap, topologically protected edge states are induced by nontrivial valley Chern number at the interface between two photonic crystals with opposite chirality. The numerical calculations show that unidirectional transport and bending-immune topological boundary states can be realized at the interface composed of topologically trivial (non-trivial) and positively (negatively) perturbed photonic crystals. Finally, a four-channel system based on the coexistence of the two effects is designed, The system is a novel electromagnetic wave router that can be selectively controlled by pseudospin degree of freedom or valley degree of freedom. This system provides a potential method for realizing the optical encoding and robust signal transmission, thereby providing greater flexibility for manipulating electromagnetic waves.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献