Effect of pulse duty ratio on temperature rise induced by focused ultrasound combined with magnetic microbubbles

Author:

Zhang Mei-Mei,Wu Yi-Yun,Yu Jie,Tu Juan,Zhang Dong, ,

Abstract

Development of acoustic/magnetic contrast agent microbubbles with various diagnostic and therapeutic functions has attracted more and more attention in medical ultrasound, biomedical engineering and clinical applications. Superparamagnetic iron oxide nanoparticles (SPIO) have unique magnetic characteristics and wonderful biocompatibility, so they can be used as MRI contrast agents to improve image contrast, spatial resolution and diagnostic accuracy. Our previous work shows that the multimodal diagnostic and therapeutic microbubble agents can be successfully constructed by embedding SPIO particles into the coating shell of conventional ultrasound contrast agent (UCA) microbubbles, which in turn changes the size distribution and shell properties of UCA microbubbles, thereby affecting their acoustic scattering, cavitation and thermal effects. However, previous studies only considered the influence factors such as acoustic pressure and microbubble concentration. The relevant investigation regarding the influence of ultrasound temporal characteristics on the dynamic response of magnetic microbubbles is still lacking. This work systematically measures the temperature enhancement effect of the SPIO-albumin microbubble solution flowing in the vascular gel phantom exposed to pulsed ultrasound with various temporal settings (e.g. duty cycle, PRF and single pulse length). Meanwhile, a two-dimensional finite element model is developed to simulate and verify the experimental observations. The results show that the increase of duty cycle of pulse signal should be the crucial factor affecting the temperature enhancement effect of flowing SPIO-albumin microbubble solution under the exposure to high-intensity focused ultrasound. The current results help us to better understand the influence of different acoustic setting parameters on the thermal effect of dual-modal magnetic UCA microbubbles, and provide useful guidance for ensuring the safety and effectiveness of the application of SPIO-albumin microbubbles in clinics.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3