Magneto-electronic property and strain regulation for non-metal atom doped armchair arsenene nanotubes

Author:

Han Jia-Ning,Huang Jun-Ming,Cao Sheng-Guo,Li Zhan-Hai,Zhang Zhen-Hua,

Abstract

For the development of high performance magnetic devices, inducing magnetism in non-magnetic materials and flexibly regulating their magneto-electronic properties are very important. According to the density functional theory (DFT), we systematically study the structural stability, magneto-electronic properties, carrier mobility and strain effect for each of armchair arsenene nanotubes doped with non-metallic atoms <i>X</i> (<i>X</i> = B, N, P, Si, Se, Te). The calculated binding energy and formation energy confirm that the geometric stability of AsANT-<i>X</i> is high. With non-metal doping, each of AsANT-<i>X</i> (<i>X</i> = B, N, P) acts as a non-magnetic semiconductor, while each of AsANT-<i>X</i> (<i>X</i> = Si, Se, Te) behaves as a bipolar magnetic semiconductor, caused by the unpaired electrons occurring between X and As. Furthermore, by doping, the carrier mobility of AsANT-<i>X</i> can be flexibly moved to a wide region, and the carrier polarity and spin polarity in mobility can be observed as well. Especially, AsANT-Si can realize a transition among bipolar magnetic semiconductor, half-semiconductor, magnetic metal, and non-magnetic metal by applying strain, which is useful for designing a mechanical switch to control spin-polarized transport that can reversibly work between magnetism and demagnetism only by applying strain. This study provides a new way for the application of arsenene.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3