Design and analysis of aspherical double-liquid lens based on planar electrode

Author:

Kong Mei-Mei,Liu Yue,Dong Yuan,Xue Yin-Yan,Pan Shi-Cheng,Zhao Rui,

Abstract

In order to study an aspherical liquid lens with simple structure and easy realization, an aspherical double-liquid lens based on planar electrode is designed based on the dielectrophoretic effect. The droplet in the dielectric electrophoretic liquid lens is polarized in the electric field and moves towards the higher electric field strength under the action of the dielectrophoresis force. With the change of the applied voltage, the dielectrophoresis force also changes, thus the contact angle of the droplet at the solid-liquid interface changes. Firstly, the models of the aspherical double-liquid lens under different voltages are established with Comsol software, and the interfacial profile data are obtained. Then the aspherical coefficients and the surface type of the fitted interface are obtained with Matlab software. Finally, the corresponding optical model of double-liquid lens is established with Zemax software. The variable range of focal lengths and root mean square (RMS) radii of the aspherical double-liquid lens at different voltages are obtained. In order to further study the characteristics of the aspherical double-liquid lens, it is compared with a spherical double-liquid lens model. Based on the contact angle theory of liquid lens and Gaussian optics theory, the relationship between the interfacial curvature radius of the spherical liquid lens and the applied voltage, and the relationship between the focal length and the applied voltage are obtained, respectively. The liquid material, cavity structure and droplet are the same as those of the aspherical lens. The corresponding spherical double-liquid lens model is established according to the two expressions relating to Zemax, and the voltage value is the same as that of the aspherical lens. Thus, the variable ranges of focal length and RMS radius in the spot diagram of the spherical double-liquid lenses at different voltages are obtained. Then, they are compared with those of aspherical double-liquid lens, and the results show that the variable range of focal length of the aspherical double-liquid lens is larger than that of the spherical double-liquid lens, and the imaging quality of the former is better than that of the latter. Moreover, through the device fabrication and preliminary experimental analysis of the aspherical double-liquid lens, the imaging resolution can reach 40.318 lp/mm. The aspherical double-liquid lens proposed in this work has the characteristics of simple structure and easy realization, which can provide a new scheme for high-quality imaging of liquid lens and its applications, and can expand the application scope of liquid lens.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3