Tunneling effect of <inline-formula><tex-math id="M2">\begin{document}$ \mathbf{S}\mathbf{L}\left(\mathit{n}, \mathit{R}\right) $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20221415_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="1-20221415_M2.png"/></alternatives></inline-formula> Toda black hole

Author:

Yang Wei,

Abstract

The SL(<i>n</i>,<i>R</i>) Toda black hole is an ideal field for us to study black hole physics because of its excellent mathematical structure and high symmetry. This work is mainly to study the Hawking radiation of SL(<i>n</i>,<i>R</i>) Toda black hole and and the problem about its related black hole information loss . For simplicity, we only consider the Hawking radiation by calculating the tunneling effect of particles with zero rest mass near the event horizon under the four-dimensional static spherical symmetric SL(<i>n</i>,<i>R</i>) Toda black hole. In the process of particle tunneling through the event horizon of the black hole, due to the conservation of energy, the mass of black hole will be changed, which will cause the event horizon to shrink. Therefore, the reaction of tunneling particles to the background space-time leads to the dynamic change of spacetime metric, that is, the self-gravitational action of the particles generates the tunneling barrier. The tunneling probability of the particle passing through the event horizon depends on the change of the black hole entropy before and after the particle exits. Under certain conditions, our results are consistent with those of RN black holes and Schwartz black holes, and the calculation results once again support the tunneling model proposed by Parikh and Wilczek. This semi-classical image shows that the new black hole radiation spectrum is not a pure heat spectrum, but there is a small deviation from the pure thermal spectrum. From the knowledge of probability theory, it can be proved that there is a correlation process between non-thermal spectra. According to the Shannon entropy definition, the black hole entropy is analogous to Shannon information entropy. We calculate the SL(<i>n</i>,<i>R</i>) Toda black hole information paradox, and find that the correlation between the particles emitted from black hole can carry information and keep the information of black hole unchanged. The specific source of this correlation, as well as the generation mechanism, remains to be further studied. The research on the problem about black hole information loss reveals that information conservation remains true when gravitational correlations among Hawking radiations are properly taken into account. Information conservation principle thus states that the Hawking radiation is unitary, which shows that the dynamics of a black hole obeys the laws of quantum mechanics. Since a black hole is a result of general relativity, the unitarity of a black hole definitely indicates the possibility of a unified gravity and quantum mechanics.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3