Two-body fragmentation of methane induced by extreme ultraviolet and high charge ions

Author:

Luo Yan,Yu Xuan,Lei Jian-Ting,Tao Chen-Yu,Zhang Shao-Feng,Zhu Xiao-Long,Ma Xin-Wen,Yan Shun-Cheng,Zhao Xiao-Hui, , , ,

Abstract

CH<sub>4</sub> is abundant in planetary atmosphere, and the study of CH<sub>4</sub> dissociation dynamics is of great importance and can help to understand the atmospheric evolution process in the universe. At present, the <inline-formula><tex-math id="M6">\begin{document}$ {\text{CH}}_4^{2 + } \to {\text{CH}}_3^ + + {{\text{H}}^ + } $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M6.png"/></alternatives></inline-formula> channel has been extensively studied, but the explanation of the dissociation mechanism for this channel is controversial. In this work, the double-photoionization experiment of CH<sub>4</sub> by extreme ultraviolet photon (XUV) in an energy range of 25-44 eV and the collision experiment between 1 MeV Ne<sup>8+</sup> and CH<sub>4</sub> are carried out by using the reaction microscope. The three-dimensional (3D) momenta of <inline-formula><tex-math id="M7">\begin{document}$ {\text{CH}}_3^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M7.png"/></alternatives></inline-formula> and H<sup>+</sup> ions are measured in coincidence, and the corresponding kinetic energy release (KER) is reconstructed, and fragmentation dynamics from the parent ion <inline-formula><tex-math id="M8">\begin{document}$ {\text{CH}}_4^{2 + } $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M8.png"/></alternatives></inline-formula> to the <inline-formula><tex-math id="M9">\begin{document}$ {\text{CH}}_3^ + + {{\text{H}}^ + } $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M9.png"/></alternatives></inline-formula> ion pair are investigated. In the photoionization experiment, two peaks in the KER spectrum are observed: one is located around 4.75 eV, and the other lies at 6.09 eV. Following the conclusions of previous experiments and the theoretical calculations of Williams et al. (Williams J B, Trevisan C S, Schöffler M S, Jahnke T, Bocharova I, Kim H, Ulrich B, Wallauer R, Sturm F, Rescigno T N, Belkacem A, Dörner R, Weber T, McCurdy C W, Landers A L 2012 <i>J. Phys. B At. Mol. Opt. Phys.</i> <b>45</b> 194003), we discuss the corresponding mechanism of each KER peak. For the 6.09 eV peak, we attribute it to the <inline-formula><tex-math id="M10">\begin{document}$ {\text{CH}}_4^{2 + } $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M10.png"/></alternatives></inline-formula> dissociation caused by the Jahn-Teller effect, because this value is consistent with the energy difference in energy between the <inline-formula><tex-math id="M11">\begin{document}$ {\text{CH}}_4^{2 + } $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M11.png"/></alternatives></inline-formula> <sup>1</sup>E initial state and the <inline-formula><tex-math id="M12">\begin{document}$ {\text{CH}}_3^ + /{{\text{H}}^ + } $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M12.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M12.png"/></alternatives></inline-formula> final state involving the Jahn-Teller effect. For the 4.75 eV peak, we believe that it may come from the direct dissociation of <inline-formula><tex-math id="M13">\begin{document}$ {\text{CH}}_4^{2 + } $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M13.png"/></alternatives></inline-formula> without contribution from the Jahn-Teller effect. More specifically, Williams et al. presented the potential energy curve for one C-H bond stretching to 8 a.u., while other C—H bonds are fixed at the initial geometry of the CH<sub>4</sub> molecule. In the reflection approximation, we infer that the extra energy is released from the internuclear distance of 8 a.u. to infinity. It is found that the KER is 4.7 eV, which is consistent with the experimental observation, suggesting that the KER peak at 4.75 eV may arise from the direct dissociation of <inline-formula><tex-math id="M14">\begin{document}$ {\text{CH}}_4^{2 + } $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="4-20231377_M14.png"/></alternatives></inline-formula> without contribution from the Jahn-Teller effect. In addition, in the 1 MeV Ne<sup>8+</sup> ion collision experiment, it is observed that the released energy values corresponding to the three KER peaks are about 4.65, 5.75, and 7.94 eV. By comparing the branching ratio of each peak with the previous experimental result, it is suggested that the velocity effect is not significant in KER spectra.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3