Spin-dependent scattering induced by surface states in spin-degenerate nodal-line semimetal

Author:

Liu Li-Shuo,Chen Wei,

Abstract

The topological nodal-line semimetal is characterized by the conduction band and valence band of electrons crossing along a one-dimensional line or closed loop in reciprocal space, with each nodal line carrying Π Berry phase. According to bulk-boundary correspondence, there exist drumheadlike surface states with weak dispersion at the boundary of system, surrounded by the projection of nodal loops onto the surface Brillouin zone. In most of nodal-line semimetals, the spin orbit coupling effect is weak, leading to the absence of a spin configuration for surface states under the single-particle picture. However, the featured weak dispersion of drumheadlike surface states enhances the electron-electron interaction effect, which triggers out ferromagnetic instability and causes spin splitting in the surface state. In this work, spin-dependent scattering caused by ferromagnetic surface states in spin-degenerate nodal-line semimetals is considered. It is found that both spin-splitting drumheadlike surface states can lead to resonant spin-flipped reflection. This physical process is reflected in a double-peak structure in the spin conductance spectrum. Specifically, we deal with the scattering problem induced by surface states in normal metal and nodal-line semimetal heterojunctions by using the scattering matrix and the Green’s functions theory, respectively, and obtain consistent conclusions. The result points out that spin-degenerate nodal-line semimetal surface states can still lead to spin-dependent transport, which provides a new perspective for the detection and potential application of spintronics in nodal-line semimetals.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3