A synaptic plasticity induced change in synaptic intensity variation and neurodynamic transition during awakening-sleep cycle

Author:

Li Rui,Xu Bang-Lin,Zhou Jian-Fang,Jiang En-Hua,Wang Bing-Hong,Yuan Wu-Jie, , ,

Abstract

It has been found experimentally that learning during wakefulness leads to a net enhancement of synaptic strength, accompanied by the neural dynamical transition from tonic to bursting firing, while the net synaptic strength decreases to a baseline level during sleep, accompanied by the transition from bursting to tonic firing. In this paper, we establish a model of synaptic plasticity, which can realize synaptic strength changes and neural dynamical transitions in wakefulness-sleep cycle by using the coupled Hindmarsh-Rose neurons. Through numerical simulation and theoretical analysis, it is further found that the average synaptic weight of the neural network can reach a stable value during either prolonged wakefulness or prolonged sleep, which depends on the ratio of some specific parameters in the model. Particularly, the synaptic weight exhibits a stable log-normal distribution observed in a real neural system, when the average synaptic weight reaches a stable value. Moreover, the fluctuation of this weight distribution is positively correlated with the fluctuation of noise in the synaptic plasticity model. The provided model of the synaptic plasticity and its dynamics results can provide a theoretical reference for studying the physiological mechanism of synaptic plasticity and neuronal firings during the wakefulness-sleep cycle, and they are expected to have potential applications in the development of therapeutic interventions for sleep disorders.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3