Effect of Ta and Re on the fracture strength and creep strength of Ni/Ni<sub>3</sub>Al interface

Author:

Hu Xue-Lan,Sun Xiao-Qing,Wang Meng-Yuan,Wang Ya-Ru,

Abstract

The first principle method based on density functional theory and generalized gradient approximation is used to investigate the interaction of Ta and Re elements at Ni/Ni<sub>3</sub>Al interface and their influence on the interface strength. According to the calculations of the dissolution energy of these two alloying elements at 7 different positions, it can be concluded that in most of the stoichiometric ranges, Ta atoms preferentially occupy Ni sites in the <i>γ</i> phase, while Re atoms occupy preferentially Al sites in <i>γ'</i> phase. The doping positions do not change when these two atoms are co-alloyed. The calculation of Griffith fracture work of Ni/Ni<sub>3</sub>Al interface system shows that the doping of Ta atoms can improve the interface fracture strength of the phase boundary region between the <i>γ</i>/<i>γ'</i> coherent atomic layer and <i>γ</i> atomic layer. The interface is easier to fracture in the phase boundary area between <i>γ</i>/<i>γ'</i> coherent atomic layer and <i>γ'</i> atomic layer after Ta atoms have been doped. The doping of Re atoms can improve the interface fracture strength of the phase boundary region between <i>γ</i>/<i>γ'</i> coherent atomic layer and <i>γ'</i> atomic layer. The interface is easier to break in the phase boundary area between <i>γ</i>/<i>γ'</i> coherent atomic layer and <i>γ</i> atomic layer. The calculation results of the unstable stacking fault energy under the interface slip system <inline-formula><tex-math id="M1">\begin{document}$ [110](001) $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222103_M1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222103_M1.png"/></alternatives></inline-formula> before and after Ta and Re alloying show that the doping of these two types of atoms increases the value of the unstable stacking fault energy of the interface, and the slip system<inline-formula><tex-math id="M2">\begin{document}$ [110](001)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222103_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20222103_M2.png"/></alternatives></inline-formula> becomes difficult to start, which enhances the ability of the interface to block the movement of dislocations, thus enhancing the creep strength of the nickel base superalloy. When doping Re atoms, the effect is greater, and the unstable stacking fault energy of the interface increases by 11.1%, which is better for improving the creep strength of the system. By studying the influence of alloying atoms on the path of vacancy migration and the energy barrier, it is concluded that the doping of Ta and Re atoms can increase the vacancy formation energy and the potential barrier of vacancy migration at the interface. The doping of Re atoms increases the migration energy barriers on both sides of the interface, and the doping of Ta atoms increases the migration energy barriers of <i>γ</i> phase. The increase of the migration barrier hinders the emission and absorption of vacancies, thereby improving the creep capability of the alloy.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference22 articles.

1. Fang C D 2004 Aeroengine 30 1
方昌德 2004 航空发动机 30 1

2. Diranda L, Cormierb J, Jacquesa A, Jean-Philippe C, Schenka T, Ferrya O 2013 Mater. Charact. 77 32

3. Yamabe-Mitarai Y, Ro Y, Harada H, T Maruko 1998 Metall. Mater. Trans. A 29 537

4. Shang S L, Kim D E, Zacherl C L, Y Wang, Y Du, Z K Liu 2012 J. Appl. Phys 112 053515

5. Huang M, Zhu J 2016 Rare Metals 35 1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3