Design of high transparent infrared stealth thin films based on FTO/Ag/FTO structure

Author:

Wang Long,Wang Liu-Ying,Liu Gu,Tang Xiu-Jian,Ge Chao-Qun,Wang Bin,Xu Ke-Jun,Wang Xin-Jun,

Abstract

Multi-spectral compatible stealth materials have become an imperative development trend, especially visible and infrared compatible stealth materials have become the most important in the field of optoelectronic stealth technology. However, infrared stealth and visible stealth have different requirements for spectral response, which makes it difficult to reconcile the design of functional coupling materials. Therefore, it is very important to develop selective control technology of optical characteristics. A visible and infrared compatible stealth superstructure thin film is proposed based on the FTO/Ag/FTO stacked film structure. A collaborative design method for high visible transmission and low infrared radiation is established, and the mechanism of microstructure characteristics affecting visible transmission and infrared reflection spectra is explained. The infrared stealth thin film with high transparency is optimized, and its compatibility stealth performance is tested and characterized by visible light transmission spectrum, infrared reflection spectrum, and thermal imaging characterization technology. It is shown that visible transmission depends on the coupling and matching effect between the semiconductor dielectric layer and the metal layer, while infrared radiation suppression mainly relies on the metal layer. As the thickness of FTO film increases, the visible transmission peak undergoes a red shift, leading the transmission spectrum curve to flatten, the average transmission first increases and then gradually decreases. As the thickness of Ag thin film layer increases, the transmission peak of visible light undergoes a blue shift, causing the transmission spectrum curve to tend to a high-frequency transmission state, narrowing the frequency domain of visible light transmission and gradually reducing the average transmittance decreases gradually. At the same time, the infrared reflectance increases with the Ag film thickness increasing, but the change of amplitude significantly decreasing when the Ag film thickness is greater than 18 nm. When the thickness of the optimized FTO/Ag/FTO film structure is 40/12/40 nm, it has a high level of background perspective reproduction and high ability to suppress high-temperature infrared radiation. The average transmittance of 0.38–0.78 μm visible light band is 82.52%, and the average reflectance of 3–14 μm mid-far infrared band is 81.46%. The radiation temperature of the sample is 49 ℃ lower in the mid infrared range and 75.8 ℃ lower in far infrared range than that of the quartz sheet at 150 ℃, respectively. The new stealth film can be attached to the camouflage coating surface of special vehicle to achieve visible and infrared compatible stealth, and can be used for cockpit windows to ensure thermal insulation, temperature control, and infrared stealth without affecting the field of view. This study can provide a new approach for designing and utilizing the visible and infrared compatible stealth materials.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3