Breathing oscillations excitation mechanism and influence factors in Hall thrusters

Author:

Yang San-Xiang,Guo Ning,Jia Yan-Hui,Geng Hai,Gao Jun,Liu Jia-Tao,Liu Shi-Yong,Yang Sheng-Lin,

Abstract

Breathing oscillations as one of the low frequency, large amplitude discharge instabilities have serious influence on the performance and lifetime of Hall thrusters. In order to acquire a better understanding of the breathing-oscillation in the Hall thrusters and provide the effective suppression methods for breathing-oscillation, the excitation mechanism and influence factors of the breathing oscillations are investigated by utilizing the two-zone predator-prey (P-P) model in this paper. The two-zone P-P model divides the discharge channel of Hall thruster into two parts according to the working principle of Hall thruster: one is the near anode zone and the other e is the ionization zone. The model includes the ion radial diffusion effect and electrons-wall interaction effect. The four-order Range-Kuttle method is utilized to solve the nonlinear two-zone P-P model equation. The research results show that the interaction of electrons with the wall has the inhibition effect on the breathing oscillations caused by the energy consumption due to the colliding with discharge channel wall. However, ion radial diffusion effect which is near anode has an excitation effect on the breathing oscillation. The ion and neutral atom dynamic behaviors obviously show the P-P feature in the phase space. In other words, there is a phase difference between the change of ion density and the change of neutral particle density. Relying on the intensity of the ions radial diffusion effect, the mode oscillation frequency and oscillation amplitude of discharge current present non monotonic change trend. More specifically, with the increase of intensity of ion radial diffusion effect, the oscillation frequency first increases and then decreases. However, the discharge peak current first decreases and then increases. Furthermore, the breathing oscillations excitation is irrelevant to the length of ionization zone, and the oscillation frequency increases (oscillation period) with length of ionization zone increasing (decreasing), provided that the length of discharge channel is constant. The research results of this paper will provide support to make clear the excitation mechanism and propose the new method of suppressing the breathing oscillations in the hall thrusters.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3