Measurement of distribution of charge adsorbed on Au<i><sub>x</sub></i>/Si(111)-7×7 surface on an atomic scale in ultra-high vacuum

Author:

Feng Jie,Guo Qiang,Shu Peng-Li,Wen Yang,Wen Huan-Fei,Ma Zong-Min,Li Yan-Jun,Liu Jun,Igor Vladimirovich Yaminsky, , , , ,

Abstract

The physicochemical properties of Au atoms adsorbed on the surface on an atomic scale play a very important role in preparing nanodevices and surface catalysis. In this paper, we use frequency modulated Kelvin probe force microscopy (FM-KPFM)to study the multi-bit adsorbed charge distribution of Au on the surface of Si(111)-(7×7) at room temperature. Firstly, the surface topography and local contact potential difference (LCPD) of Au at different adsorption sites in Si(111)-(7×7) are successfully obtained by using home-made ultra-high vacuum Kelvin probe force microscopy. Secondly, we analyze the atomic characteristics of specific atomic positions of Au/Si(111)-(7×7) by force spectroscopy and potential difference, and realize the atomic identification . The adsorption characteristics of Au/Si(111)-(7×7) surface charge transfer and Au are explained by combining differential charge density calculations. The results show that Au atom adsorption mainly is in the form of single atom and cluster . Specifically, the Au cluster is adsorbed at the three central positions of Si(111)-(7×7) in a hexagonal structure of six atoms. Individual Au atoms are adsorbed to the positions of central adatoms of Si(111)-(7×7). At the same time, through the measurement of potential difference, it is known that a single Au atom and Au cluster lose electrons, presenting a positive electrical characteristic. The results of surface differential charge density show that Au undergoes charge transfer during adsorption, losing part of the charge, which locally reduces the work function at the position of the adsorbed atom. In the range of distances where short-range forces, local contact potential energy differences and differential charge densities change, the theoretical results and experimental results are in reasonable agreement.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3