Directed transport of deformable self-propulsion particles in an asymmetric periodic channel

Author:

Guo Rui-Xue,Ai Bao-Quan,

Abstract

<sec>Molecular motor can effectively convert chemical energy into mechanical energy in living organisms, and its research is currently at the forefront of study in biology and physics. The dynamic process of its guided movement, along with the crucial role they play in intra-cellular material transport, has significantly aroused the interest of many researchers. Theoretical and experimental researches have allowed detailed examinations of the motion attributes of these molecular motors. The Brownian ratchet model important. It provides an illustration of a non-equilibrium system that transforms thermal fluctuation into guided transport by utilizing temporal or spatial asymmetry. The mechanism has been extensively explored and studied across fields including physics, biology and nanotechnology. Investigations into a variety of ratchets and identification of optimum conditions contribute to a deeper understanding of guided Brownian particle transport.</sec><sec>Preceding studies on ratchet systems largely concentrated on the rectification motions of diverse types of particles-active, polar and chiral-in asymmetric structures. However, the transport of deformable particles in asymmetric channel has not been examined relatively. Particles in soft material systems such as cell monolayer, tissue, foam, and emulsion are frequently deformable. The shape deformation of these soft particles significantly affects the system’s dynamic behavior. Thus, understanding the guided transport of these deformable particles within a confined structure is crucial.</sec><sec>In order to explain this problem more clearly, we numerically simulate the guided transportation of active, deformable particles within a two-dimensional, periodic, asymmetric channel. We identify the factors that influence the transport of these particles within a confined structure. The main feature of the deformable particle model is that the particle’s shape is characterized by multiple degree of freedom. For active deformable particles, self-propulsion speed disrupts thermodynamic equilibrium, leading to guided transport in spatially asymmetric condition. Our findings demonstrate that a particle’s direction of movement is entirely determined by the channel's asymmetric parameter, and it tends to be attracted towards increased stability. Augmenting particle self-propulsion speed and particle softness can facilitate ratchet transport. When the self-propulsion speed <i>v</i><sub>0</sub> is large, the particle’s tensile effect becomes more apparent, and particle softening significantly enhances directed transport. In contrast, an increase in density and rotational diffusion can slow particle rectification. Increased density can obstruct particles, making channel passage more difficult. Elevated rotational diffusion reduces persistence length, challenging particle transition through channels. With constant density, a greater number of particles will also encourage rectification. These research findings offer a valuable insight into the transportation behaviors of deformable particles in a confined structure. They also deliver crucial theoretical support for applicable experiments in the field of soft matter.</sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3