General higher-order rogue waves in the space-shifted <inline-formula><tex-math id="M2">\begin{document}$\mathcal{PT}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20222298_M2.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20222298_M2.png"/></alternatives></inline-formula>-symmetric nonlocal nonlinear Schrödinger equation
-
Published:2023
Issue:10
Volume:72
Page:104204
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Rao Ji-Guang,Chen Sheng-An,Wu Zhao-Jun,He Jin-Song, ,
Abstract
General higher-order rogue wave solutions to the space-shifted <inline-formula><tex-math id="M8">\begin{document}$\mathcal{PT}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20222298_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20222298_M8.png"/></alternatives></inline-formula>-symmetric nonlocal nonlinear Schrödinger equation are constructed by employing the Kadomtsev-Petviashvili hierarchy reduction method. The analytical expressions for rogue wave solutions of any <i>N</i>th-order are given through Schur polynomials. We first analyze the dynamics of the first-order rogue waves, and find that the maximum amplitude of the rogue waves can reach any height larger than three times of the constant background amplitude. The effects of the space-shifted factor <inline-formula><tex-math id="M10">\begin{document}$x_0$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20222298_M10.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20222298_M10.png"/></alternatives></inline-formula> of the <inline-formula><tex-math id="M11">\begin{document}$\mathcal{PT}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20222298_M11.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="10-20222298_M11.png"/></alternatives></inline-formula>-symmetric nonlocal nonlinear Schrödinger equation in the first-order rogue wave solutions are studied, which only changes the center positions of the rogue waves. The dynamical behaviours and patterns of the second-order rogue waves are also analytically investigated. Then the relationships between <i>N</i>th-order rogue wave patterns and the parameters in the analytical expressions of the rogue wave solutions are given, and the several different patterns of the higher-order rogue waves are further shown.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献