Synthetic aperture radar image of fractal rough surface

Author:

Wang Tong ,Tong Chuang-Ming ,Li Xi-Min ,Li Chang-Ze ,

Abstract

The synthetic aperture radar imaging of fractal rough surface is studied. The natural surface can be very accurately described in terms of fractal geometry. Such a two-dimensional fractional Brownian motion (FBM) stochastic process provides a very sound description of natural surface. The samples of band-limited FBM process are realized by using physical Weierstrass-Mandelbrot function. The parameters of fractal rough surface are discussed and how to choose the value is analyzed. The roughness is mostly determined by the Hurst coefficient or the fractal dimension. In the actual simulation, a fractal rough surface can be seen as the superposition of finite sinusoidal tones, and any scattering measurement is limited to a finite set of scales. In this paper, the surface is described with two-scale model, i. e., locally approximated by plane facets with dimension smaller than that of resolution cells, but much larger than wavelength. Because this paper focuses on the texture of the synthetic aperture radar (SAR) image and the overall image texture is related to the macroscopic scale, the microscopic roughness superimposed on the facets is neglected. For the macroscopic scale scattering problem, a facet Kirchhoff approach is proposed. The fractal rough surface consists of many triangle facets, and the scatter field of each facet can be obtained by the facet Kirchhoff approach. The principle of dimension selection is studied. The dimension of facet must follow the principle that the surface profile is not damaged. At the same time, the facet dimension should be as large as possible in order to increase the efficiency of imaging. After establishing the fractal geometry model and obtaining the field from each facet, the SAR image can be realized through Rang-Doppler method in the stripmap mode. The results show that in the SAR image, the effects of fractal parameters on the rough surface can be obviously observed. The peaks and ravines of rough surface are obviously observed at low fractal dimension or high Hurst coefficient. However, when the fractal dimension gets higher or Hurst coefficient gets higher, the peaks and ravines disappear because the surface becomes rougher and diffuse scattering is enhanced. The effect of fractal parameter on the SAR image can be specifically expressed with entropy and angle second moment. With the increase of fractal dimension D, the texture of SAR image behaves more randomly and disorderly. So the entropy of SAR image becomes larger and the angle second moment of SAR image becomes smaller. The texture of SAR image is also related to the squint angle and frequency of incidence wave. The relative roughness will become larger when the squint angle and frequency of incidence wave become larger. The research on a complete fractal surface SAR imaging system consists of establishing the environmental model, developing the electromagnetic scattering model, and using the SAR imaging technique. The achievements show the characteristics of fractal rough surface SAR image, which have a theoretical support for natural environment remote sensing and the environment parameters inversion.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3