Atmospheric polarization pattern simulation for small solar elevation angles and the analysis of atmospheric effect

Author:

Hu Shuai ,Gao Tai-Chang ,Li Hao ,Cheng Tian-Ji ,Liu Lei ,Huang Wei ,Jiang Shi-Yang ,

Abstract

To simulate the atmospheric polarization pattern for small solar elevation angle, we develop a the vector radiative transfer model VSPART (vector pseudo-spherical radiative transfer model considering refraction), and use it to calculate the polarization state of downwelling diffuse light. In this model, the propagation trajectory, transmittance rate and polarization states of directly transmitted light are tracked by ray-tracing method for spherical refractive atmosphere. Based on the matrix algorithm, an improved method to solve the radiative transfer equation is proposed. Output of this model includes not only the Stokes vector and degree of polarization of diffuse light, but also the polarized irradiance. The precision of VSPART is validated against the benchmark results, literature results and SPDISORT, and excellent agreement is achieved. DOP (degree of polarization) and AOP (angle of polarization) are simulated for pure Rayleigh scattering atmosphere and atmosphere with aerosol, and the characteristics of their angular distributions are analyzed. In addition, the influences of atmospheric spherical geometry and refraction effect on the sky DOP are discussed as well. Simulation results show that for low solar elevation angle, with the increasing of wavelength, DOP increases gradually, and the Arago and Babinet neutral points move towards the horizon when Rayleigh scattering atmosphere is considered. Although the existence of aerosol does not change the basic distribution of DOP, it has a significant influence on AOP. With the increasing of aerosol optical depth, DOP decreases gradually, and the distribution of AOP changes dramatically. By comparing the sky distribution of DOP, it could also be concluded that the neutral points might arise from low order scattering. The area affected by atmospheric spherical geometry and atmospheric refraction effect mainly includes the area near horizontal directions, the area near the neutral points and the area perpendicular to the ground. For pure Rayleigh scattering atmosphere, the influence is reduced with the increasing of the wavelength of incident light, especially for the areas near the neutral points, where the influence gradually disappears as wavelength increases. For atmosphere with aerosol, with their optical depth increasing, the effects of atmospheric spherical geometry and atmospheric refraction are gradually enhanced.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3