Tapered structure based all-fiber probe for endoscopic optical coherence tomography

Author:

Yan Xue-Guo ,Shen Yi ,Pan Cong ,Li Peng ,Ding Zhi-Hua ,

Abstract

A tapered structure based all-fiber endoscopic probe for endoscopic optical coherence tomography (OCT) is presented in this paper. The designation and fabrication of a miniaturized high-performance probe are critical in endoscopic OCT. Compared to the conventional fiber-lens structure based endoscopic probe, the all-fiber probe has a prominent edge in size and flexibility. Due to its lower beam-divergence, the large core multi-mode fiber makes a better fit than a general single mode fiber does when utilized to replace the micro lens in a conventional endoscopic probe as the imaging component. Furthermore, a tapered fiber is introduced as a transition section between the single mode fiber and the large core multi-mode fiber in order to enhance the light transmission efficiency and reduce the rigid length of the probe simultaneously. First, in order to obtain an optimal performance, optical simulation software(Rsoft) is adopted to determine the probe's proper lengths of the tapered section and the large core multi-mode fiber. Second, the all-fiber structure based endoscopic probe is fabricated by means of large core multi-mode fiber tapering, cutting and fusing processes. The beam characterization and insertion loss of the fabricated probe are measured experimentally The probe itself is 250 m, and after covering with a stainless steel protective tube, its outer diameter becomes 325 m. The rigid length of the probe is about 1 cm, which is more flexible and easier for inserting into curved blood vessels. The insertion loss of the probe is measured to be about 0.3 dB. To the best of our knowledge, it is the lowest among all of the all-fiber endoscopic probes. Finally, the probe is integrated with a custom-built swept-source optical coherence tomography system. Imaging of human fingertip and ex-vivo chicken trachea is conducted to demonstrate the key performance parameters of our probe. The effective imaging range of the probe is up to 800 microns in air without the help of any extra mechanism to expand its depth of focus. The probe offers a compact, efficient and flexible candidate for endoscopic optical coherence tomography, which is promising in cardiovascular investigations.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3