Spin transport properties for iron-doped zigzag-graphene nanoribbons interface

Author:

Deng Xiao-Qing ,Sun Lin ,Li Chun-Xian ,

Abstract

By using the first-principles method based on the density-functional theory, the spin transport properties for the systems consisting of iron-doped zigzag-edged graphene nanoribbons (ZGNRs) with iron doping at the interface, where the connection is realized between electrodes and the central scattering region, are investigated theoretically. The ribbon widths of ZGNRs are four zigzag C chains (4 ZGNRs), and the length of scattering region is N unit cells (here, N=4, 6, 8, 10). Results show that -spin current is obviously greater than the -spin current under the ferromagnetic (FM) configuration, which is the spin filtering effect. The reason of spin filtering effect cames from two aspects: a) The symmetry-dependent transport properties which arise from different coupling rules between the up and * subbands around the Fermi level, that are dependent on the wave-function symmetry of the two subbands; b) the distribution of molecular orbit within the bias windows, location, or delocalization. While for antiferromagnetic (AFM) spin state, both and spin currents are very small and both the positive and negative bias regions originate from the existence of band gap; therefore, no obvious spin filtering effect can be obtained. For antiparallel (AP) magnetism configuration, spin filtering effect also can be obtained at high bias. Next, we also investigate the other models: the ribbon width of ZGNRs is five (six) zigzag C chains, namely, 5 ZGNRs (6 ZGNRs), and the scattering region is 6 unit cells length. The currents in 6 ZGNRs are less than that of 5 ZGNRs obviously, and this difference is revealed to arise from different couplings between the conducting subbands around the Fermi level, which is dependent on the symmetry of the systems. However, both of the two models show the similar characteristic: spin filtering effect. The spin current is obviously greater than the -spin current with the whole bias under the ferromagnetic (FM) configuration, The analysis on the electronic structure, transmission spectra, the molecular projected self-consistent Hamiltonian (MPSH) which have been modified by the electrodes, local density (LDOS) and the spin density give an insight into the observed results for the systems. These results indicate that the iron doping at interface between electrodes and central scattering region for ZGNRs can modulate effectively the spin electrons. It is of important significance for developing high spin polarization filtering device based on GNRs.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3