Inverstigation on loading of the Dimple optical trap based on a magnetically levitated large-volume crossed optical dipole trap

Author:

Wang Xiao-Feng ,Li Yu-Qing ,Feng Guo-Sheng ,Wu Ji-Zhou ,Ma Jie ,Xiao Lian-Tuan ,Jia Suo-Tang ,

Abstract

Optical trapping techniques and the ability to tune the atomic interactions both have made the unprecedented progress in the quantum gas research field. The major advantage of the optical trap is that the atoms are likely to be trapped at various sub-levels of the electronic ground state and the interaction strength can be controlled by Feshbach resonance. Optical trapping methods in combination with magnetic tuning of the scattering properties directly lead to the experimental achievements of Bose-Einstein condensation (BEC) of Cesium, which at first failed by using magnetic trapping approaches due to the large inelastic collision rate. The rapid loss of cesium atoms due to the inelastic two-body collisions greatly suppresses the efficient evaporative cooling to obtain a condensate. For optical production of cesium atomic BEC, it is necessary to prepare a large number of Cs atoms at specified state in an optical trap for condensation, especially for an efficient forced evaporation cooling. In this paper, we demonstrate our research on enhancing the loading rate of the atoms by using a dimple trap combined with a large-volume optical dipole trap (reservoir trap). In our work, the cold cesium atoms are prepared by a three-dimensional degenerated Raman sideband cooling, and then loaded into a large-volume crossed dipole trap by using the magnetic levitation technique. Effective load of the dimple optical trap is realized by superposing the small-volume dimple trap on the center of the largevolume optical trap. The theoretical analyses are performed for the magnetically levitated large-volume crossed dipole trap in variable magnetic field gradients and uniform bias fields. Optimal experimental values are acquired accordingly. The combined potential curve of the dimple trap, which is superimposed on the magnetically levitated large-volume dipole trap, is also given. The loading of precooled atoms from Raman sideband cooling into the magnetically levitated large-volume optical trap is measured in variable magnetic field gradients and uniform bias fields. Different loading results of the dimple trap are investigated, including direct loading after Raman sideband cooling, the large-volume optical trap and the magnetically levitated large-volume dipole trap without anti-trapping potential. Comparatively, the atomic number density is enhanced by a factor of ~15 by loading the atomic sample from the magnetically levitated large-volume dipole trap into the dimple optical trap. The experimental results lay a sound basis for the further cooling and densifying the atomic cloud through the evaporating cooling stage. This method can be used to obtain more cold atoms or a large number of Bose-Einstein condensation atoms for atomic species with large atom mass.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3