First-principle study of the oxygen adsorption on Zr surface with Nb or Ge

Author:

Zhang Hai-Hui ,Li Xiao-Di ,Xie Yao-Ping ,Hu Li-Juan ,Yao Mei-Yi ,

Abstract

It is observed that the addition of Nb or Ge to Zr alloy can improve its corrosion resistance. Because of the extreme importance of the mechanism of oxidation to corrosion properties of Zr alloy, we systematically investigate the O adsorption properties on pure Zr surface and Zr surface with Nb or Ge using first-principle calculations based on density functional theory. Firstly, we present the absorption energies to reveal the influences of Nb and Ge on the O absorption capacity of Zr surfaces, resepctively. According to the calculated absorption energies, we find that Nb and Ge reduce the oxygen absorption capacities of most of surfaces, and the only exception is that Nb enhances the oxygen absorption capacity of Zr(1120) surface. Moreover, the absorption energy of O at favorable site on Zr(0001) surface is much lower than on Zr(1010) or (1120) surface. Therefore, the initial oxidation of polycrystalline Zr should occur at Zr(0001) surface and the absorption capacity of this surface takes a predominant role in the initial oxidation of polycrystalline surface. Secondly, the segregation of Nb or Ge in Zr alloy is anisotropic. We find that the segregation of Ge to surface is exothermic, while the segregation of Nb to surface is endothermic. Nb and Ge migrate to Zr(0001) surface more easily than to Zr(1120) and Zr(1010) surfaces. Therefore, the influence of Nb or Ge on absorption property of Zr(0001) is much larger than that of Zr(1010) or (1120) surface. Based on the adsorption and segregation properties of Nb and Ge on Zr surfaces, both Nb and Ge can reduce the oxygen absorption capacity of Zr surface and inhibit the initial oxidation of Zr alloy surface, which can be used to understand the experimental observation that Nb and Ge can improve the corrosion resistance of Zr alloy. Finally, the electronic structure analysis shows that the influences of Nb and Ge on oxygen adsorption capacity of Zr surface are exerted by changing the d-band distribution. According to Hammer-Norskov d-band center theory, the absorption energy of absorpate on transition metal surface is mainly determined by d-band center. The addition of Nb or Ge to the Zr surface changes the location of d-band of the surface, which results in the variation of absorption energy of O atom on the Zr surface. For absorption at top site on each surface, it is found that the absorption energy of O only depends on the d-band center of the surface atom below the O atoms. However, for absorption at favorable sites on each surface, the absorption energy of O atom is influenced not only by the d-band center of surface atom, but also by atomic structural properties of the surface.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference58 articles.

1. Liu J Z 2007 Structure Nuclear Materials (Beijing: Chemical Industry Press) pp19-22 (in Chinese) [刘建章 2007核结构材料(北京: 化学工业出版社) 第19-22页]

2. Zhou B X, Li Q, Yao M Y, Xia S, Liu W Q, Zhu Y L 2007 Rare Met. Mater. Eng. 36 1129 (in Chinese) [周邦新, 李强, 姚美意, 夏爽, 刘文庆, 褚于良 2007 稀有金属材料与工程 36 1129]

3. Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X 2011 Acta Metall. Sin. 47 163 (in Chinese) [李士炉, 姚美意, 张欣, 耿建桥, 彭剑超, 周邦新 2011 金属学报 47 163]

4. Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H 2005 Atom Energ. Sci. Technol. (suppl.) 39 1 (in Chinese) [赵文金, 周邦新, 苗志, 彭倩, 蒋有荣, 蒋宏曼, 庞华 2005 原子能科学技术 (增刊) 39 1]

5. Kruger R M, Adamson R B, Brenner S S 1992 J. Nucl. Mater. 189 193

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3