An ultra-wideband absorber based on graphene

Author:

Jiang Yan-Nan ,Wang Yang ,Ge De-Biao ,Li Si-Min ,Cao Wei-Ping ,Gao Xi ,Yu Xin-Hua , , , ,

Abstract

Stealth technology is of great importance and significance in reducing the radar cross section and improving the survivability of the target aircraft. Absorber is one of the most important structures in stealth technology. However, the present investigations of absorbers mainly focus on the narrow band or multi-band. To extend the operation bandwidth, a graphene-based absorber structure is proposed in this paper. The proposed absorber has a periodic structure whose unit cell consists of a square and a circular graphene-based ring. The surface impedance of the periodic structure can be optimized to match the impedance of the free space in a very wide band by adjusting the electrostatic bias voltage. Then the operation band is significantly extended. By using the commercial software, CST Microwave Studio 2014, the performance of the proposed absorber is studied. The simulated results show that the proposed absorber can absorb electromagnetic (EM) waves in an ultra-wideband from 2.1 to 9.0 GHz, with an absorbing rate of up to 90%. Moreover, the proposed absorber is insensitive to the polarization of the incident wave due to the symmetry of the structure. We also find that the absorber can be tuned to work at any frequency in a range from 2.0 to 9.0 GHz for a fixed geometrical parameter. The equivalent circuit model (ECM) approach and interference theory (INF) are employed to investigate the physical mechanism of the proposed absorber. According to the ECM, we analyze the resonant characteristics of the square and circular graphene rings. Owing to the existence of two different graphene rings, two resonant frequencies are detected. By optimizing the structure parameters of the graphene rings, the two resonant frequencies are brought closer, resulting in the increase of the operation band. On the other hand, the real part of the input impedance of the equivalent circuit reaches up to about 300 Ω and the imaginary part is close to 0 Ω, which provides good matching to the free space, leading to high absorption rate. According to the interference theory, the amplitudes and phases of the direct reflection and the multiple reflections of EM waves are studied. It is found that the destructive interference between the direct reflection and multiple reflection makes the absorber have high performance in an ultra-wideband. The results obtained from ECM and INF are in good agreement with the simulation ones.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3