Study on discharge phenomena of short-air-gap in needle-plate electrode based on fractal theory

Author:

Zheng Dian-Chun ,Ding Ning ,Shen Xiang-Dong ,Zhao Da-Wei ,Zheng Qiu-Ping ,Wei Hong-Qing , ,

Abstract

The process of gas discharge is very complicated and experimental observations indicate that streamers in short gap under non-uniform electric fields always exhibit irregularity and self-similarity, so a dielectric breakdown model, which is the combination of the random fractal method and the traditional streamer theory, can simulate this phenomenon.In this paper, a stochastic model with the growth probability index at any point proportional to the power of the electric field is utilized to quantify the channel tortuosity, and the space charge effect is taken into account as well. The potential distribution is solved by the Poisson's equation which is calculated iteratively by finite difference method; and the box counting method is used to characterize the channel tortuosity and estimate the fractal dimensions of the discharge channels. Based on this, an idea is proposed that the analysis of the experimental results, which in turn provide the appropriate parameters for the model, can better elucidate this phenomenon.The growth probability index can always get from the previous data, but the range of the will change under different experimental condition and there will exist differences in simulation results on fractal dimensions for different , so the limitation of the previous studies is its possible lack of generalizability. In order to define the range of the growth probability index in this model, the bifurcation phenomenon of plasma channels generated by the discharge, affected by HVDC (high-voltage direct current) of short-air-gap in a needle-plate electrode, is captured by ICCD. Before estimating the fractal dimensions of discharge channels, experimental images are saved as a binarized (black and white) image, and the gray-level transformation and boundary identification algorithm will be conducted to remove the apparent thickness of the discharge channel caused by the magnitude of the flowing currents through different branches. Experimental results show that the range of fractal dimensions in the box counting method for the discharge channel is 1.40-1.55. Under the same condition that other factors remain the same but the adjusted growth probability index in this simulation model should accord with the experimental results, all the facts demonstrate that the value of must lie between 0.04 and 0.05.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3