Author:
Qin Ji-Xing ,Katsnelson Boris ,Peng Zhao-Hui ,Li Zheng-Lin ,Zhang Ren-He ,Luo Wen-Yu , , ,
Abstract
Complex zone of the ocean is often characterized by horizontal variations of environmental parameters(bathymetry, sound speed profile, bottom properties etc.), initiating redistribution of the sound field in horizontal plane, which is the so-called three-dimensional (3D) effect. Based on the adiabatic mode parabolic equation method, modeling of 3D effects is carried out, in which the eigenvalues and eigenfunctions are calculated by the standard normal mode model KRAKEN, and the amplitude corresponding to each mode is computed by the wide-angle parabolic equation model RAM. The present 3D model is very efficient and can give clear physical meaning, but it can be only applied to a waveguide whose properties vary gradually with horizontal range due to the adiabatic assumption between different modes. This model is then used to analyze the horizontal refraction caused by internal waves and by a coastal wedge. The numerical results show that there are several areas in the horizontal plane, corresponding to different structures of intensity distributions. Moreover, the redistribution of the sound field in horizontal plane depends on source frequency and mode number. Frequency and modal dependences lead to variations of spectrum, distortion of signal with some spectrum, and spatiotemporal fluctuations of the sound field.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference38 articles.
1. Tappert F D 1977 Wave Propagation and Underwater Acoustics (New York: Springer) p224
2. Collis J M, Siegmann W L, Jensen F B Zampolli M, Ksel E T, Collins M D 2008 J. Acoust. Soc. Am. 123 51
3. Pierce A D 1965 J. Acoust Soc. Am. 37 19
4. Evans R B 1983 J. Acoust Soc. Am. 74 188
5. Zhang R H, Liu H, He Y, Akulichev V A 1994 Acta Acust. 19 408 (in Chinese) [张仁和, 刘红, 何怡, Akulichev V A 1994 声学学报 19 408]
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献