Effect of variable network clustering on the accuracy of node centrality

Author:

Song Yu-Ping ,Ni Jing ,

Abstract

Measurements of node centrality are based on characterizing the network topology structure in a certain perspective. Changing the network topology structure would affect the accuracy of the measurements. In this paper, we employ the Holme-Kim model to construct scale-free networks with tunable clustering, and consider the four measurements of classical centrality, including degree centrality, closeness centrality, betweenness centrality and the eigenvector centrality. For comparing the accuracy of the four centrality measurements, we simulate the susceptible-infected-recovered (SIR) spreading of the tunable clustering scale free networks. Experimental results show that the degree centrality and the betweenness centrality are more accurate in networks with lower clustering, while the eigenvector centrality performs well in high clustering networks, and the accuracy of the closeness centrality keeps stable in networks with variable clustering. In addition, the accuracy of the degree centrality and the betweenness centrality are more reliable in the spreading process at the high infectious rates than that of the eigenvector centrality and the closeness centrality. Furthermore, we also use the reconnected autonomous system networks to validate the performance of the four classical centrality measurements with varying cluster. Results show that the accuracy of the degree centrality declines slowly when the clustering of real reconnected networks increases from 0.3 to 0.6, and the accuracy of the closeness centrality has a tiny fluctuation when the clustering of real reconnected networks varies. The betweenness centrality is more accurate in networks with lower clustering, while the eigenvector centrality performs well in high clustering networks, which is the same as in the tunable clustering scale free networks. According to the spreading experiments in the artificial and real networks, we conclude that the network clustering structure affects the accuracy of the node centrality, and suggest that when evaluating the node influence, we can choose the degree centrality in the low clustering networks, while the eigenvector centrality and the closeness centrality are still in the high clustering networks. When considering the spreading dynamics, the accuracy of the eigenvector centrality and the closeness centrality is high, but the accuracy of the degree centrality and the betweenness centrality is more reliable in the spreading process at high infectious rates. This work would be helpful for deeply understanding of the node centrality measurements in complex networks.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference42 articles.

1. Albert R, Barabsi A L 2002 Rev. Mod. Phys. 74 47

2. Newman M E J 2003 SIAM. Rev. 45 167

3. L L, Medo M, Yeung C H, Zhang Y C, Zhang Z K, Zhou T 2012 Phys. Rep. 519 1

4. Gao Z K, Zhang X W, Jin N D, Norbert M, Jvrgen K 2013 Phys. Rev. E 88 032910

5. Rong Z H, Tang M, Wang X F, Wu Z X, Yan G, Zhou T 2012 Journal of Electronic Science and Technology 34 801 (in Chinese) [荣智海, 唐明, 汪小帆, 吴枝喜, 严钢, 周涛 2012 电子科技大学学报 34 801]

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3