Theoretical and experimental study of atmospheric turbulence measurement using two-aperture differential scintillation method

Author:

Cheng Zhi ,Tan Feng-Fu ,Jing Xu ,He Feng ,Hou Zai-Hong , ,

Abstract

We report the basic theory and first horizontal results of a method called two-aperture differential scintillation method which is aimed at monitoring the vertical profile of atmospheric optical turbulence strength. The method is based on irradiance fluctuation of active light source, but can extract the optical turbulence information in the single-passage path. In this paper, the theoretical principle of two-aperture differential scintillation method is derived in detail. A concise expression is proposed for irradiance fluctuation structure function with differential aperture in the Rytov approximation under a weak fluctuation regime based on the cross-path theory. The mathematic relationship between irradiance fluctuation structure function and atmospheric optical turbulence strength is then developed. The effects of beacon aperture and beacon altitude on path weighting function of this method are analyzed for Kolmogorov turbulence. In order to test the validity of the new method, the experiments are conducted to compare the two-aperture differential scintillation method and single-aperture scintillation method in atmospheric boundary layer over 2 km horizontal single-passage path. In this arrangement, we employ a differential image motion monitor system to measure differential scintillation. Simultaneously, a large aperture scintillation instrument is placed 5 m away at the same altitude to measure the single-aperture scintillation. It is shown that the results of atmospheric refractive index structure constant deduced from the two methods are in good agreement. The measurements of atmospheric coherence length for spherical wave corresponding to the two methods indicate a linear correction factor (R2) of 0.96, in a slope of 0.98 with an offset of -0.09 cm. Feasibility and effectiveness of two-aperture differential scintillation method are thus verified experimentally. The novel method can separate single-passage scintillation information of active beacon double-passage propagation, thereby providing an accurate technique for measuring the atmospheric turbulence of active beacon.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3