Analysis of sound propagation in the direct-arrival zone in deep water with a vector sensor and its application

Author:

Sun Mei ,Zhou Shi-Hong ,Li Zheng-Lin , ,

Abstract

The receiver at larger depth can receive the direct-arrival signal from a shallow source in a certain range in deep water. During a deep-water experiment conducted in 2014, a vector sensor located at a depth of 3146 m received the direct-arrival signals from the transducer towed at about 140 m depth by the source ship. In this paper, the propagation properties of the sound field in the direct-arrival zone in deep water are studied based on the ray theory and subsequently a source-range-estimation method is proposed. In the direct-arrival zone, the arrival angle is one of the most important properties of sound field, and the sound field is mainly composed of the contributions of a direct ray and a surface-reflected ray. The theoretical analysis and simulation results show that the amplitudes of horizontal particle velocity and vertical particle velocity are related to the mean arrival angle of the direct ray and the surface-reflected ray, and the larger the arrival angle, the greater the vertical particle velocity is, but the weaker the horizontal particle velocity is. Furthermore, the energy difference between horizontal particle velocity and vertical particle velocity can be approximately expressed by a monotonic function of the arrival angle, which varies fast with the horizontal distance between source and receiver. This property is applied to the estimation of source range. The analysis of the experimental data shows that the estimated source ranges are consistent with the GPS ranges within the range of 8 km, and the mean relative error of source range estimation is within 10%.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference18 articles.

1. Li F H, Sun M, Zhang R H 2009 Proceedings of the Second International Shallow-Water Conference Shanghai, China, September 16-20, 2009 p383

2. Yu Y, Hui J Y, Zhao A B, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 物理学报 57 5742]

3. Sun G Q, Yang D S, Zhang L Y, Shi S G 2003 Acta Acust. 28 66 (in Chinese) [孙贵青, 杨德森, 张揽月, 时胜国 2003 声学学报 28 66]

4. Li F H, Zhu L M, Chen D S 2013 Sci. Sin.: Phys. Mech. Astron. 43 s99 (in Chinese) [李风华, 朱良明, 陈德胜 2013 中国科学: 物理学 力学 天文学 43 s99]

5. Sun M, Li F H, Zhang R H 2011 Acta Acust. 36 215 (in Chinese) [孙梅, 李风华, 张仁和 2011 声学学报 36 215]

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Passive ranging of a moving target in the direct-arrival zone in deep sea using a single vector hydrophone;The Journal of the Acoustical Society of America;2023-10-01

2. Passive depth estimation for a narrowband source using a single vector sensor in deep water;JASA Express Letters;2023-06-01

3. Propagation of the Vector Sound Field in the Bottom-Reflected Zone in Deep Water;2022 5th International Conference on Information Communication and Signal Processing (ICICSP);2022-11-26

4. A multi‐step method for passive broadband source localisation using a single vector sensor;IET Radar, Sonar & Navigation;2022-06-16

5. Overview of deep water acoustics;Chinese Science Bulletin;2021-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3