Design and verification of an electronically controllable ultrathin coding periodic element in Ku band

Author:

Yang Huan-Huan ,Yang Fan ,Xu Shen-Heng ,Li Mao-Kun ,Cao Xiang-Yu ,Gao Jun , ,

Abstract

The coding periodic element is able to achieve coded reconfigurable electromagnetic (EM) responses by loading controllable electronic devices. In this work, an electronically controllable ultrathin planar periodic element structure in Ku band is implemented with one PIN diode. When the PIN diode turns ON or OFF by applying a proper biasing voltage, the resonant property of the element changes correspondingly, and hence a 180° phase difference between the two states is obtained. By optimizing the geometrical parameters, the reflection loss less than 0.5 dB is achieved by the proposed element. Therefore, using a proper biasing voltage control network, the PIN diodes of the proposed elements in a periodic arrangement are set at different states, which may be denoted by a binary string with "1"s or "0"s, and the whole array of elements operates as a binary coding periodic structure and exhibits controllable EM functionalities. In order to verify the coding property of the proposed element, the general principle for the biasing circuit design is given. An optimized biasing circuit is thoroughly studied using both field distribution analysis and equivalent circuit theory. Simulated results show that the specially designed biasing hardly affects the element reflection performance. Finally, a group of element prototypes are fabricated with welded PIN diodes and measured using the standard waveguide test method. The difference in mirror image between the waveguide test and the desired periodic arrangement is also discussed. The experimental results validate that the proposed element successfully achieves good coding EM performance by controlling its biasing voltage. The reflection loss of the element is very low, and well distributed phase difference between the two element states is observed. The simulation and experiment results agree well, and the deviation between them is analyzed in detail. The proposed element possesses distinctive favorable features such as coded controllable EM functionalities, simple structure and ultrathin profile, thus exhibiting the promising prospects in tunable stealth surface, agile antennas, and many other applications.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3