A simple and effective simulation for electrical conductivity of warm dense titanium

Author:

Fu Zhi-Jian ,Jia Li-Jun ,Xia Ji-Hong ,Tang Ke ,Li Zhao-Hong ,Quan Wei-Long ,Chen Qi-Feng , , ,

Abstract

A linear mixture rule has been used to calculate the electrical conductivity of warm dense titanium plasmas in the density and temperature ranges of 10-510 gcm-3 and 1043104 K, in which the interactions among electrons, atoms, and ions are considered systemically. In the first place, the coupling and degeneracy parameters of titanium plasma are shown as a function of density and temperature in the warm dense range. The warm dense titanium plasmas span from weakly coupled, nondegenerate region to strongly coupled, degenerate domain in the whole density and temperature regime. The titanium plasma becomes strongly coupled plasma at higher than 0.22 gcm-3 and almost in the whole temperature range where the coupling parameter ii 1. In particular, the Coulomb interactions become stronger at higher than 0.56 gcm-3 where 10 ii 216. At the same time, the titanium plasma is in the degenerate regime at higher than 0.35 gcm-3 where the degeneracy parameter 1, and is in the nondegenerate or partial degenerate regime at lower than 0.35 gcm-3 where 1. The influence of temperature on the coupling and degeneracy parameters is less than that of the density, and the plasma composition is calculated by the nonideal Saha equation felicitously. Thus the ionization degree decreases with increasing density at lower density, which is due to the thermal ionization in that regime where the free electrons have sufficiently high thermal energy. Meanwhile, the ionization degree increases with the increase of density at higher than 0.1 gcm-3, in which the pressure ionization takes place in the region where the electrons have sufficiently high density and the collisions increase rapidly. There is a minimum for the ionization degree at about 0.1 gcm-3, while the maximum ionization degree reaches 4 at 10 gcm-3. In the whole temperature regime, the titanium plasma is mostly in the partial plasma domain at lower than 1 gcm-3, and becomes completely ionized at higher than 1 gcm-3. The calculated conductivity is in reasonable agreement with the experimental data. At a fixed temperature, there is a minimum in each of the ionization curves at lower than 3104 K. And the position of the minimum is shifted towards decreasing density with increasing temperature. The conductivity monotonously increases as the density increases at a temprature of 3104 K. At a constant density, the conductivity increases with increasing temperature for lower than 0.56 gcm-3, while it decreases with increasing temperature for higher than 0.56 gcm-3. This behavior is connected with the nonmetal to metal transition in a dense plasma regime. So the nonmetal to metal transition in dense titanium plasma occurs at about 0.56 gcm-3 and its corresponding electrical conductivity is 1.5105 -1m-1. Finally, the contour of electrical conductivity of titanium plasma is shown as a function of density and temperature in the whole range. Its electrical conductivity spans a range from 103 to 106 -1m-1. It can be seen that the titanium plasma gradually approaches the semiconducting regime as temperature increases. When the order of magnitude of the electrical conductivity reaches 105 -1m-1, the plasma almost becomes conducting fluid in the higher density range. This also demonstrates that a nonmetal-metal transition has taken place in the warm dense titanium plasma.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference44 articles.

1. DeSilva A, Vunni G 2011 Phys. Rev. E 83 037402

2. Zaghloul M 2008 Phys. Plasmas 15 042705

3. Clrouin J, Renaudin P, Laudernet Y, Noiret P, Desjarlais M 2005 Phys. Rev. B 71 064203

4. Renaudin P, Blancard C, Faussurier G, Noiret P 2002 Phys. Rev. Lett. 88 215001

5. Fan D, Huang Z C, Huang J K, Wang X X, Huang Y 2015 Acta Phys. Sin. 64 108102 (in Chinese) [樊丁, 黄自成, 黄健康, 王新鑫, 黄勇 2015 物理学报 64 108102]

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3