High-bandwidth control of piezoelectric steering mirror for suppression of laser beam jitter

Author:

Fan Mu-Wen ,Huang Lin-Hai ,Li Mei ,Rao Chang-Hui , , ,

Abstract

Laser beam steering or pointing, which stabilizes the beam direction, is critical in many areas, such as optical communication systems, astronomy and directed-energy systems etc. However, the disturbances including atmospheric turbulence and mechanical jitter on platform may degrade the pointing accuracy. A proportional-integral (PI) feedback control commonly has been used in the track loop with a fast steering mirror. To compensate dynamic disturbance effectively, the laser beam steering control system must have a larger bandwidth than the disturbance bandwidth. But the control bandwidth is limited by the noise of the sensor, computing latency, and the light energy. So, a simple proportional-integral (PI) feedback controller of a piezoelectric fast steering mirror (PFSM) can only compensate the broadband disturbance of the atmospheric turbulence, but cannot effectively compensate a larger amplitude narrowband jitter because of the low control bandwidth. Moreover, when the control bandwidth is tuned to high, the mechanical resonance of the PFSM can cause the instability of the system. An improved dual two-order filter assisted high-bandwidth control algorithm to improve the pointing accuracy and error attenuation capability is proposed. This method can control a PFSM for suppression of laser beam jitter. The influence of filter parameters on frequency characteristics is analyzed, and then, a practical design method is proposed. The dual two-order filter can combine the characteristics of traditional notch filter and two-order low-pass filter, and can also obtain any desired amplitude in the interesting frequency ragion with little influence on the others. The principle of the proposed filter for suppressing the mechanical resonance of the PFSM and the narrowband disturbance is elaborated. And then, the different dual two-order filters are designed according to the frequency content of the PFSM and the narrowband disturbance. Finally, the proposed dual two-order filter assisted PI control algorithm and classic PI control algorithm are compared with each other. Experimental results show that, in the same conditions, the pointing accuracy of the proposed two-order filter assisted PI control algorithm is nearly 5 times better than that of the classic PI control algorithm, and the error attenuation bandwidth is one time higher. It also indicates that the proposed algorithm does not need an additional sensor; it is simple and effective for the suppression of the mechanical resonance of a PFSM and that of the narrowband disturbance, hence it improves the system error attenuation bandwidth and the beam pointing accuracy.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3