An improved Mach-Zehnder acousto-optic modulator on a silicon-on-insulator platform

Author:

Qin Chen ,Yu Hui ,Ye Qiao-Bo ,Wei Huan ,Jiang Xiao-Qing ,

Abstract

The interdigital transducer (IDT) of the traditional Mach-Zehnder (MZ) acousto-optic modulator on a silicon-on-insulator (SOI) platform is located outside its two arms. The crest and trough of the surface acoustic wave (SAW) are used to modulate the two arms of the MZ interferometer so as to achieve a high modulation efficiency. Therefore, the distance between the two arms must be odd multiples of half acoustic wavelength. However, since the substrate is usually not uniform, the wavelength of the SAW changes as it transmits through the surface of the device. As a result, the exact distance between the two arms is difficult to choose. On the other hand, the SAW losses a portion of energy after passing through the first arm of the MZ interferometer, so the modulation of the second arm becomes much weaker. To solve these problems, we propose a new structure where its IDT is situated in the middle of the two arms of the MZ interferometer. With this scheme, the two arms of the MZ interferometer are located exactly at the crest and the trough of the SAW, while they are modulated with equal strength. In this paper, we first use the finite element method to simulate the acoustic frequency and the surface displacement of the excited SAW. Then we deduce the refractive index variations of all layers according to their acousto-optic effects. After that, we analyze the influences of different factors on the acousto-optic modulation efficiency, including the type and size of waveguide, the thickness of zinc oxide (ZnO) layer, and the area it covers, the number of electrodes, etc. These parameters are accordingly optimized to enhance the modulation efficiency. Modeling result based on COMSOL Multiphysics indicates that when the width of the strip waveguide is 6 m, the ZnO layer covers only the area under the IDT and has a thickness of 2.2 m, and the number of the electrodes is 50, the effective refractive index variation of the waveguide reaches 4.0810-4 provided that the amplitude of the driving voltage is 1 V. This value is 12% higher than that of the traditional structure.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference25 articles.

1. Soref R 2006 IEEE J. Sel. Top. Quantum Electron. 12 1678

2. Kimerling L C, Ahn D, Apsel A B, Beals M, Carothers D, Chen Y K, Conway T, Gill D M, Grove M, Hong C Y, Lipson M, Liu J, Michel J, Pan D, Patel S S, Pomerene A T, Rasras M, Sparacin D K, Tu K Y, White A E, Wong C W 2006 Proc. SPIE 6125 612502

3. Arakawa Y, Yasuhiko A, Nakamura T, Urino Y, Fujita T 2013 IEEE Commun. Mag. 51 72

4. Li Q, Li H O, Tang N, Zhai J H, Song S X 2015 Chin. Phys. B 24 037203

5. Barretto E C S, Hvam J M 2010 Proc. SPIE 7719 771920

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3