Fluid dynamic analysis and experimental study of a temperature sensor array used in meteorological observation

Author:

Yang Jie ,Liu Qing-Quan ,Dai Wei ,Mao Xiao-Li ,Zhang Jia-Hong ,Li Min , , , ,

Abstract

Until now, the air temperature sensors inside thermometer screens and radiation shields are affected by solar radiation, which causes the measuring result to become greater than the actual temperature. The temperature rise can reach 0.8 K or even higher. In this paper, a temperature sensor array design is established for obtaining high precision measurement results. The temperature sensor array consists of an array of radiation shields which features a tube-shape, a platinum resistance sensor array, an aluminum plate with a silver mirror surface and a temperature measurement module that includes a high accuracy thermometer circuit. There is always at least one radiation shield that supplies relatively good ventilation under any airflow direction. A computational fluid dynamic method is implemented to analyze and calculate the temperature rise induced by radiation under various environmental conditions. A correction equation of the temperature rise is obtained by surface fitting using a genetic algorithm. The measurement accuracy can be further improved by this correction equation. In order to verify the performance of the sensor array, a forced ventilation temperature measurement platform is constructed, which consists of a platinum resistance sensor, an L-shaped radiation shield and an air pump. The airflow rate inside the radiation shield can be up to 20~m/s, and the L-shaped radiation shield can horizontally rotate under the control of a software to minimize the error caused by the heated radiation shield. The temperature sensor array, a temperature sensor with traditional radiation shield, and the forced ventilation temperature measurement platform are characterized in the same environment. To experimentally verify the computational fluid dynamic method and the genetic algorithm, a number of contrast tests are performed. The average temperature rise of sensors equipped with the traditional radiation shields is 0.409 K. In contrast, the temperature rise of the sensor array is as low as 0.027K. This temperature sensor array allows the error caused by solar radiation to be reduced by a percentage of approximately 93%. The temperature rise of temperature sensor array, caused by the angular variation of airflow direction is on the order of several mK. When the solar radiation intensity and the airflow rate are 1000W/m2 and 0.1m/s, respectively, the temperature rise is 0.097 K. The temperature rise is 0.05K, when the airflow rate is greater than 0.4 m/s. The temperature rise can be reduced to 0.01 K, when the airflow rate is greater than 2 m/s. The average offset and root mean square error between the correction equation and experimental results are 0.0174 K and 0.0215 K, respectively, which demonstrates the accuracy of the computational fluid dynamic method and genetic algorithm proposed in this research. The temperature measurement accuracy has the potential to be further improved by utilizing the computational fluid dynamics method and the genetic algorithm.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3