Analysis of the magnetohydrodynamic heat shield system for hypersonic vehicles

Author:

Li Kai ,Liu Wei-Qiang ,

Abstract

During hypersonic flight, the weakly-ionized plasma layer post shock can be utilized for flow control by externally applying a magnetic field. The Lorentz force, which is induced by the interaction between the ionized air and the magnetic field, decelerates the flow in the shock layer. Consequently, the thickness of the shock layer is increased and the convective heat flux can be mitigated. This so-called magnetohydrodynamic (MHD) heat shield system has been proved to be effective in heat flux mitigation by many researchers.Different from the dipole magnet conventionally used in previous researches on MHD heat shield, a normal columned solenoid-based MHD thermal protection system model is built in this paper. The present numerical analysis is mainly based on the low magneto-Reynolds MHD model, which neglects the induction magnetic field. Hall effect and the ion-slip effect are also neglected here because an insulating wall is assumed. With these hypothesis, a series of axisymmetric simulations on the flow field of Japanese Orbital Reentry Experimental Capsule (OREX) are performed to analyze the influence of different externally applied magnetic fields on the efficiency of MHD thermal protection. First, based on the dipole magnet field, the influence of magnetic induction density is analyzed. Second, differences between the efficiency of MHD thermal protection under three types of magnetic field, namely dipole magnet, solenoid magnet, and uniform magnet field are compared. Finally, the influence of the geometric parameters of solenoid magnet on the MHD thermal protection is analyzed. Results show that, saturation effect exists in the process of MHD heat flux mitigation and it confines the effectiveness of MHD heat shield system. Thermal protection capabilities under three types of magnetic field are ranked from weak to strong as dipole magnet, solenoid magnet, and uniform magnet field. Under the same magnetic induction intensity at the stagnation point, first, the increase of solenoid radius improves its effectiveness in MHD thermal protection; second, the influence of solenoid length on the efficiency of MHD thermal protection is weak, indicating that the solenoid length can be optimized with the remaining two factors, namely the exciting current density and the total weight of solenoid magnet. Finally, the closer distance between the solenoid and stagnation point has negative influence on MHD thermal protection for the stagnation and the shoulder area of the reentry capsule.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3