The analytic expressions of temperature and stress in directly liquid cooled thin slab laser

Author:

Li Ce ,Feng Guo-Ying ,Yang Huo-Mu ,

Abstract

In this paper, based on the convective heat transfer and conduction principle, the thermal effect analysis model of the directly liquid cooled uniformly pumped thin slab laser is established. The approximate plane stress and the principle of minimum are introduced to describe thermal stress distribution in the thin slab. Firstly, the relationships between the flow velocities in different flow channel thickness values and the convection heat transfer coefficients and also the relationship between flow velocity and coolant temperature rise are studied. Moreover, the influences of different flow channel thickness values on temperature field and thermal stress distribution are analyzed. Finally, the variation trends of wave-front phase distortion with the change of heat power in the case of Zig-zag path and direct path are investigated, respectively. The results reveal that thicker flow channel can achieve stronger heat treatment effects in an appropriate range of the cooled liquid flow rate, and the thermal profile is symmetrical with respect to the center plane of slab. In addition, the longitudinal maximum temperature rise occurs in the outlet; the maximum stress distortions centralize on the both ends and partial sides of slab. It is worthy to mention that the one-dimensional temperature gradient and smaller stress form more probably for thicker flow channel., Furthermore, zig-zag path can alleviate obviously wave-front aberration due to thermo-optic effect. In this paper the thermal effect of the liquid direct cooled thin slab laser is investigated. The research results are beneficial to the design and optimization of the directly liquid cooled thin slab laser.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

1. Huai X L, Li Z G 2008 Appl. Phys. Lett. 92 041121

2. Mu J, Feng G Y, Yang H M, Tang C, Zhou S H 2013 Acta Phys. Sin. 62 124204 (in Chinese) [母健, 冯国英, 杨火木, 唐淳, 周寿桓 2013 物理学报 62 124204]

3. Ichiro S, Yoichi S, Sunao K, Voicu L, Takunori T, Akio I, Kunio Y 2002 Opt. Lett. 27 234

4. He G Y, Guo J, Jiao Z X, Wang B 2012 Acta Phys. Sin. 61 94217 (in Chinese) [. 何广源, 郭靖, 焦中兴, 王彪 2012 物理学报 61 94217]

5. Foster, J D, Osterink L M 1970 J. Appl. Phys. 41 3656

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3