Research on the interaction of Airy pulse and soliton in the anomalous dispersion region

Author:

Zhu Kun-Zhan ,Jia Wei-Guo ,Zhang Kui ,Yu Yu ,Zhang Jun-Ping ,Ke Neimule ,

Abstract

Based on the split step Fourier method, the interaction between soliton and Airy pulse is studied in the anomalous dispersion region. And after that the strength, time-domain, and time-shift are simulated by the software of MATLAB, respectively. Results show that cross phase modulation (XPM) builds up when soliton and Airy pulse begin to overlap, which affects the properties of the two pulses. The soliton keeps its original shape but the direction of propagation is deflected by the influence of Airy pulse's self-acceleration. Airy pulse converts to soliton and the direction of propagation changes due to XPM. Therefore, the properties of Airy pulse and soliton are interacted with each other because of XPM. The time-domain of the two pulses is also influenced by XPM and their different shapes will change so as to contain a main and a secondary peaks whose structures are similar and the location and pulse width of the main and the secondary peaks are also roughly the same, which is the basis for Airy pulse to convert to soliton. In addition, the change of Airy pulse and soliton is simulated for different input intensity value of r. Simulation shows that the time-shifts of Airy pulse and soliton increase with increasing input intensity r and their variation trends are the same.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3