Study on evaporation from alloys used in microwave vacuum electron devices

Author:

Liu Yan-Wen ,Wang Xiao-Xia ,Lu Yu-Xin ,Tian Hong ,Zhu Hong ,Meng Ming-Feng ,Zhao Li ,Gu Bing ,

Abstract

The development of modern satellite communication technologies is imposing higher demands on the lifetime and reliability of the microwave vacuum electronic devices, which directly depend on the evaporation properties of the extensively used Monel and stainless steel. Therefore, it is of vital importance to study the evaporation properties of these two types of metallic materials. For the first time, as far as we know, this paper proposes to study the evaporation properties of metallic materials using time-of-flight mass spectrometer (TOFMS). The components and the contents of the vacuum background, the evaporants from the Monel and from the stainless steel have been measured using the TOFMS, respectively. After the pressure of the measurement chamber is below 4.010-8 Pa, the TOFMS is used for the metallic materials working at different temperatures. They are respectively acquired when the Monel and stainless steel are at room temperature on operate between 750 to 900 ℃ under a pressure of 1.010-6 Pa. The measurements are carried out rapidly and in high sensitivity. As disclosed by the measurements, Mn and Cu began to evaporate when the Monel and the stainless steel are heated to 800 ℃, which is still far below the melting points of the two alloys (1243 ℃ and 1080 ℃). When the Monel and the stainless steel are further heated to 900 ℃, the evaporation of Mn, Cu, and Cr becomes quite considerable. Once the evaporated Mn, Cu, or Cr deposit on the ceramics for the insulation in an electron gun, its insulation will be deteriorated. Hence, the Monel and the stainless steel are not suitable to be use as the components in cathode electron guns, especially those used in the devices that are to work a long lifetime in high vacuum. Moreover, the Monel and the stainless steel are not suitable for used as the components that are often under the electron bombardment, e.g., anodes and collectors, either. The SEM images and XRD of the heat treated surface structures of the Monel and the stainless steel in ultrahigh vacuum (1.010-6 Pa) have also been studied. On heating at 900 ℃ for 30 and 120 min the surface structure and composition change remarkably and a significant reduction in Mn and Cr is visible, and also a large number of holes and crystal boundaries emerge on the surfaces of the two metallic alloys. With increasing heating time, the boundaries will grow larger and larger. As a result, the strength of the two metallic materials becomes weaker and gas permeation and leakage even occur. Therefore, it can be concluded that the components made from Monel and stainless steel, especially those with thin walls, should not be heated to high temperatures in ultrahigh vacuum for a long time. The above phenomena are analyzed in detail theoretically and the proper and feasible application methods of the metallic materials are explored in device design and technological process control. These works are expected to contribute to the prolonging of the lifetimes of the satellites, and will lead to tremendous economic benefits.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3