First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals

Author:

Zhao Bai-Qiang ,Zhang Yun ,Qiu Xiao-Yan ,Wang Xue-Wei ,

Abstract

The binding energies, electronic structures and optical properties of LiNbO3 and Cu/Fe doped LiNbO3 crystals are investigated by first principles based on the density functional theory in this paper. The supersell structures of crystals are established each with 60 atoms, including five models: pure LiNbO3, LN1 (Cu2+ occupy Li+ site), LN2 (Fe3+ occupy Li+ site), LN3 (Cu2+ occupy Li+site and Fe3+ occupy Li+ site) and LN4 (Cu2+ occupy Li+ site and Fe3+ occupy Nb5+ site). The optimized results show that the total energies of all models can achieve certain stable values, which means that the models accord with the actual crystal structures. The impurity energy levels of Cu and Fe doped LiNbO3 crystals appear within the band gaps, which are contributed by Cu 3d orbital, Fe 3d orbital and O 2p orbital; in co-doped LiNbO3, Cu offers deep energy level and Fe offers shallow energy level within the band gaps. There are two wide absorption peaks appearing respectively at 445 nm and 630 nm in co-doped LiNbO3 crystal, which correspond to the electron transitions from Eg orbital of Cu to Nb 4d orbital and T2g orbital of Fe to Nb 4d orbital respectively; the absorption edge of Cu, Fe mono and co-doped LiNbO3 crystals are red-shift successively, which coincides with the variation of band gape. The light absorption intensity of co-doped LiNbO3 crystal is stronger than that of mono-doped LiNbO3 crystal. The co-doped sample light absorption property is related to Fe site occupation. In this paper, it is suggested that the co-doped sample with Fe at Nb site is more competitive than that with Fe at Li site in optical volume holographic storage applications, and that reducing properly [Fe2+]/[Fe3+] value may be conducible to the formation of this advantage.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3