Tunable near-zero index of self-assembled photonic crystal using magnetic fluid

Author:

Geng Tao ,Wu Na ,Dong Xiang-Mei ,Gao Xiu-Min , ,

Abstract

In a zero index material, the phase velocity of light is much greater than the speed of light in vacuum and can even approach to infinity. Thus, the phase of light throughout a piece of zero-index material is essentially a constant. The zero index material has recently been used in many areas due to its extraordinary optical properties, including beam collimation, cloaking and phase matching in nonlinear optics. However, most of zero index materials usually have narrow operating bandwidths and the operating frequencies are not tunable. In this work, the model of tunable near-zero index photonic crystal is established by using colloidal magnetic fluid. Magnetic fluid, as a kind of easy-made mature nanoscale magnetic material, has proved to be an excellent candidate for fabricating self-assembled photonic crystal, especially the band-tunable photonic crystal with fast and reversible response to external magnetic field. The band structure can be calculated using the plane wave expansion method. For TE mode, it can be seen that a triply-degenerate point (normalized frequency f=0.734) at point under external magnetic field H=147 Oe, forms a Dirac-like point in the band structure, which is called an accidental-degeneracy-induced Dirac-like point. The effective permittivity eff and permeability eff are calculated using an expanded effective medium theory based on the Mie scattering theory. The calculated results show that both eff and eff are equal to zero at Dirac-like point, which means that the effective index neff is zero and the effective impedance Zeff is 1. The lattice structure of such a self-assembled photonic crystal will change with the external magnetic field, leading to the disappearance of Dirac-like point. However, when 143.6 OeH 152.4 Oe (1 Oe=79.5775 A/m), |neff | can keep less than 0.05 under the condition of Zeff = 1. Correspondingly, the operating frequency will change from 0.75 to 0.716. The model is verified by the numerical simulations (COMSOL Multiphysics) and the theoretical results agree well with the numerical ones.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3