Author:
Wang Cong ,Zhang Hong-Li ,
Abstract
Parameter estimation for fractional-order chaotic systems is a multi-dimensional optimization problem, which is one of the important issues in fractional-order chaotic control and synchronization. With the orthogonal learning strategies and the original dual learning mechanism, the original dual-state transition algorithm is proposed for solving the problem of parameter estimation in fractional-order chaotic systems. The orthogonal learning strategy is presented which can increase the diversity of initial population and improve the convergence ability. And the original dual learning mechanism is presented which can increase the space ability of states, and also can improve the search capability of the algorithm. In the process of identification, we adopt Radau IIA method to solve the fractional-order differential equation. The simulation of the fractional-order multi-scroll chaotic systems with or without noise is conducted and the results demonstrate the e?ectiveness, robustness, and versatility of the proposed algorithm.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献