Dual-tree complex wavelet transform based multifractal detrended fluctuation analysis for nonstationary time series

Author:

Du Wen-Liao ,Tao Jian-Feng ,Gong Xiao-Yun ,Gong Liang ,Liu Cheng-Liang , ,

Abstract

Multifractal detrended fluctuation analysis is an effective tool for dealing with the non-uniformity and singularity of nonstationary time series. For the serious issues of the trend extraction and the inefficient computation in the traditional polynomial fitting based multifractal detrended fluctuation analysis, based on the dual-tree complex wavelet transform, a novel multifractal analysis is proposed. To begin with, as the dual-tree complex wavelet transform has the anti-aliasing and nearly shift-invariance, it is first utilized to decompose the signal through the pyramid algorithm, and the scale-dependent trends and the fluctuations are extracted from the wavelet coefficients. Then, using the wavelet coefficients, the length of the non-overlapping segment on a corresponding time scale is computed through the Hilbert transform, and each of the extracted fluctuations is divided into a series of non-overlapping segments whose sizes are identical. Next, on each scale, the detrended fluctuation function for each segment is calculated, and the overall fluctuation function can be obtained by averaging all segments with different orders. Finally, the generalized Hurst index and scaling exponent spectrum are determined from the logarithmic relations between the overall detrended fluctuation function and the time scale and the standard partition function, respectively, and then the multifractal singularity spectrum is calculated with the help of Legendre transform. We assess the performance of the dual-tree-complex wavelet transform based multifractal detrended fluctuation analysis (MFDFA) procedure through the classic multiplicative cascading process and the fractional Brownian motions, which have the theoretical fractal measures. For the multiplicative cascading process, compared with the traditional polynomial fitting based MFDFA methods, the proposed multifractal approach defines the trends and the length of non-overlapping segments adaptively and obtains a more precise result, while for the traditional MFDFA method, for the negative orders, no matter the generalized Hurst index, scaling exponents spectrum, or the multifractal singularity spectrum, the acquired results each have a significant deviation from the theoretical one. For the time series with different sizes, the proposed method can also give a stable result. Compared with the other adaptive method such as maximal overlap discrete wavelet transform based MFDFA and the discrete wavelet transfrom based MFDFA, the proposed approach obtains a very accurate result and has a fast calculation speed. For another time series of fractional Brownian motions with different Hurst indexes of 0.4, 0.5 and 0.6, which represent the anticorrelated, uncorrelated, correlated process, respectively, the results of the proposed method are consistent with those analytical results, while the results of the polynomial fitting based MFDFA methods are most greatly affected by the order of the fitting polynomial. The method in this article provides a valuable reference for how to use the dual-tree complex wavelet transform to realize the multifractal detrended fluctuation analysis, and we can benefit from the signal self-adaptive trend extraction and the high computation efficiency.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multifractal analysis of financial markets: a review;Reports on Progress in Physics;2019-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3