Quasi-particle calculations on electronic and optical properties of the peroxy linkage and neutral oxygen vacancy defects in amorphous silica

Author:

Su Rui ,Zhang Hong ,Jiang Sheng-Li ,Chen Jun ,Han Wei , , ,

Abstract

Recently, fused silica has been used to prepare the optical windows in the inertial confinement fusion (ICF) equipment. Challenge of application of fused silica is due to the defect-related optical absorption which is considered as the main mechanism of laser-induced damage process. However, due to structural complexity, calculation of the defect-related absorption from the first principles is only limited to small clusters, and a full treatment using the state of art GW and Bathe-Salpeter equation (BSE) method is still lacking.In this work, density functional theory calculations are performed to study the defect structure of the peroxy linkage (POL) and the neutral oxygen vacancy (NOV) defects in amorphous silica. Firstly, well relaxed structure is generated by using a combination of the bond switching Monte Carlo technique and the DFT-based structure optimization. Secondly, the defect structures are generated and studied in both the ground singlet (S0) and the first excited triplet (T1) states. Finally, the electronic and optical properties of the considered structures are studied by applying the self-consistent quasi-particle GW (sc-QPGW) and the BSE methods in Tamm-Dankoff approximation.In the ground state S0, the POL defect is found to be stable and shares a similar local structure to the H2O2 molecule. However, in T1 state, the POL defect breaks into a pair of E' center ( - Si ) and peroxy oxygen radial ( O-O-Si-). For the NOV defect, the optimized Si-Si bond length in the ground state is 2.51 with a variation of 0.1 due to the structural disorder. In comparison to the ground state, the optimized Si-Si bond length in T1 state increases to 3.56 .The scGW/BSE calculation on the defect free structure predicts a quasi particle band gap of 10.1 eV and an optical band gap of 8.0 eV, which are consistent well with the available experimental results. For the POL defect, the scGW/BSE calculation reveals a weak exciton peak at 6.3 eV. Below 6.3 eV, no new exciton peak is found, implying that the experimentally suggested 3.8 eV peak could not be attributed to the POL defect. Calculations of the NOV defect gives a strong and highly polarized optical absorption peak at 7.4 eV which is close to the previous experimental result at 7.6 eV. The structural relaxation induced by NOV also contributes to another absorption peak at 7.8 eV.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3