A molecular dynamics simulation of thermodynamic properties of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene under high pressure and high temperature

Author:

Fan Hang ,Nie Fu-De ,Long Yao ,Chen Jun , ,

Abstract

Equation of states and thermodynamic properties of insensitive high explosive 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) are investigated by using molecular dynamics simulation, where an all-atom force field for TATB developed by Richard H. Gee and isothermal-isobaric molecular dynamics (NPT-MD) methods are used. Results obtained include thermal expansion coefficient, elastic constants, tensile modulus, and debye frequency under high temperature and high pressure. The volume coefficient of thermal expansion for crystalline TATB is calculated in a temperature range of 200 to 500 K and at atmospheric pressure. The result, 35.910-5 K-1, is in general agreements with the experimental results. Results of elastic constants show that the crystalline TATB is an orthotropic material. The calculated elastic constants decrease with increasing temperature in the range from 0 to 450 K, while increase as the pressure increases from 0 to 50 GPa. And the bulk modulus at 300 K is 11.32 GPa, which is in good agreement with the available experimental results. Results obtained above have been compared with available experimental data, and also discussed in relation to the previous calculations. The above results are better than existing ones gained by others. In addition, the elastic anisotropy becomes lower with increasing temperature or pressure. As the temperature goes up to 400 K, the lattice becomes unstable. The sound speed and Debye frequency are calculated by using the data of elastic constants at different pressures. This provides a theoretical basis to calculate the anisotropic thermal conductivity for crystalline TATB.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3