Noninvasive temperature monitoring for high intensity focused ultrasound therapy based on electrical impedance tomography

Author:

Guo Ge-Pu ,Su Hui-Dan ,Ding He-Ping ,Ma Qing-Yu ,

Abstract

As a new treatment modality with little thermal damage and few cell metastases to surrounding normal tissues, high intensity focused ultrasound (HIFU) therapy is considered to be one of the most promising technologies for tumor therapy in the 21st century. However, noninvasive temperature monitoring for the focal region exhibits great significance of precise thermal dosage control in HIFU treatment. By combining electrical impedance measurement and HIFU, an electrical impedance tomography (EIT) based temperature monitoring method using surface voltages is proposed to reconstruct the distribution of electrical conductivity inside the focal plane on the basis of the temperature dependent electrical impedance of tissues. In theoretical study, a comprehensive system of EIT measurement during HIFU therapy is established. With the consideration of acoustic absorption in viscous tissues, three-dimensional Helmholtz equation for HIFU is simplified into two-dimensional axisymmetric cylindrical coordinates, and the characteristics of temperature rising in the focal region are derived using Pennes bio-heat transfer equation. Then, by introducing the temperature-conductivity relation into tissues, the processing methods for electrical field and surface voltage in the focal region are constructed with constant current injection from two symmetrical electrodes. In simulation study, by applying the experimental parameters of the focused transducer, the distributions of acoustic pressure and temperature are simulated at a fixed acoustic power, and then the corresponding distributions of conductivity in the focal plane are achieved at different treatment times for centric and eccentric focusing. Furthermore, with the simulations of current density and electrical potential generated by the rotating current injection from 16 pairs of symmetrical electrodes, 32×32 voltages are detected by the 32 surface electrodes placed around the focal plane of the model. In conductivity image reconstruction, the modified Newton-Raphson (MNR) algorithm is employed to conduct iterative calculation. It shows that with the increase of HIFU treatment time, the electrical conductivity in the focal region increases accordingly and reaches a maximum value in the center due to the highest acoustic pressure and the most energy accumulation. It is proved that not only the position of the focal center, but also the conductivity distribution inside the focal region can be restored accurately by the proposed EIT based reconstruction algorithm. The favorable results demonstrate the feasibility of temperature monitoring during HIFU therapy, and also provide a new method of evaluating the noninvasive efficacy and controlling the dose based on electrical impedance measurements.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference43 articles.

1. Hutchinson L 2011 Nat. Rev. Clin. Oncol. 8 385

2. Kennedy J E 2005 Nat. Rev. Canc. 5 321

3. Qian S Y, Wang H Z 2001 Acta Phys. Sin. 50 501 (in Chinese)[钱盛友, 王鸿樟2001物理学报50 501]

4. Gavrilov L R 2013 J. Acoust. Soc. Amer. 133 4348

5. Jiang L X, Hu B 2006 Tech. Acoust. 25 43(in Chinese)[姜立新, 胡兵2006声学技术25 43]

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3