Dual-modulated photoreflectance spectra of semi-insulating GaAs

Author:

Liu Xue-Lu ,Wu Jiang-Bin ,Luo Xiang-Dong ,Tan Ping-Heng , , ,

Abstract

For a semiconductor material, the characterization of its electronic band structure is very important for analyzing its physical properties and applications in semiconductor-based devices. Photoreflectance spectroscopy is a contactless and highly sensitive method of characterizing electronic band structures of semiconductor materials. In the photoreflectance spectroscopy, the modulation of pumping laser can cause a change in material dielectric function particularly around the singularity points of joint density of states. Thus the information about the critical points in electronic band structure can be obtained by measuring these subtle changes. However, in the conventional single-modulated photoreflectance spectroscopy, Rayleigh scattering and inevitable photoluminescence signals originating from the pumping laser strongly disturb the line shape fitting of photoreflectance signal and influence the determination of critical point numbers. Thus, experimental technique of photoreflectance spectroscopy needs further optimizing. In this work, we make some improvements on the basis of traditional measurement technique of photoreflectance spectroscopy. We set an additional optical chopper for the pumping laser which can modulate the amplitude of the photoreflectance signal. We use a dual-channel lock-in amplifier to demodulate both the unmodulated reflectance signals and the subtle changes in modulated reflectance signals at the same time, which avoids the systematic errors derived from multiple measurements compared with the single-modulated photoreflectance measurement. The combination of dual-modulated technique and dual-channel lock-in amplifier can successfully eliminate the disturbances from Rayleigh scattering and photoluminescence, thus improving the signal-to-noise ratio of the system. Under a visible laser (2.33 eV) pumping, we measure the room-temperature dual-modulated photoreflectance spectrum of semi-insulating GaAs in a region from near-infrared to ultraviolet (1.1 ~6.0 eV) and obtain several optical features which correspond to certain critical points in its electronic band structure. Besides the unambiguously resolved energy level transition of E0 and E0+0 around the bandgap, we also obtain several high-energy optical features above the energy of pumping laser which are related to high-energy level transitions of E1, E1+1, E0' and E2 in the electronic band structure of GaAs. This is consistent with the results from ellipsometric spectroscopy and electroreflectance spectroscopy. The results demonstrate that for those high-energy optical features, the mechanism for photoreflectance is that the photon-generated carriers modulate the build-in electric field which affects the overall electronic band structures, rather than the band filling effect around those critical points. This indicates that dual-modulated photoreflectance performs better in the characterization of semiconductors electronic band structure at critical point around and above its bandgap.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3